首页|基于双分支残差网络的高光谱图像分类

基于双分支残差网络的高光谱图像分类

扫码查看
高光谱图像分类是高光谱图像理解及应用的基础操作,其准确率是衡量算法性能的关键指标.提出了一种新的双分支结构的残差网络(DSSRN),该网络能够提取高光谱图像的鲁棒特征,可用于高光谱图像分类任务以提升分类准确率.首先,采用拉普拉斯变换、主成分分析(PCA)及数据扩增方法对高光谱图像数据进行预处理,在增强图像特征的同时去除冗余信息并增加样本数量;然后,采用注意力机制及双分支残差网络,对每个分支都采用光谱和空间残差网络进行光谱和空间信息提取,生成一维特征向量;最后,采用全连接层获得图像分类结果.在印度松树、帕维亚大学与肯尼迪航天中心遥感数据集上进行测试实验,结果表明所提出的模型与双分支结构ACSS-GCN相比,分类准确率在3种数据集上分别提升了1.94、0.27、20.85百分点.
Hyperspectral Image Classification Using Dual-Branch Residual Networks
Hyperspectral image classification is a basic operation for understanding and applying hyperspectral images,and its accuracy is a key index for measuring the performance of the algorithm used.A novel two-branch residual network(DSSRN)is proposed that can extract robust features of hyperspectral images and is applicable to hyperspectral image classification for improving classification accuracy.First,the Laplace transform,principal component analysis(PCA),and data-amplification methods are used to preprocess hyperspectral image data,enhance image features,remove redundant information,and increase the number of samples.Subsequently,an attention mechanism and a two-branch residual network are used,where spectral and spatial residual networks are adopted in each branch to extract spectral and spatial information as well as to generate one-dimensional feature vectors.Finally,image-classification results are obtained using the fully connected layer.Experiments are conducted on remote-sensing datasets at the Indian Pine,University of Pavia,and Kennedy Space Center.Compared with the two-branch ACSS-GCN,the classification accuracy of proposed model shows 1.94、0.27、20.85 percentage points improvements on the three abovementioned datasets,respectively.

hyperspectral image classificationimage preprocessingresidual networkattention mechanism

杜天娇、张永生、包利东

展开 >

长春理工大学计算机科学技术学院,吉林 长春 130022

长春理工大学中山研究院,广东 中山 528437

长春理工大学人工智能学院,吉林 长春 130022

高光谱图像分类 图像预处理 残差网络 注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)