首页|基于深度多先验学习的水下图像增强模型

基于深度多先验学习的水下图像增强模型

扫码查看
作为海洋信息的重要载体,高质量且清晰的水下图像是海洋资源勘探和海洋安全监测等一系列水下作业任务的重要保证.由于光照选择性吸收和散射等因素的影响,水下图像会出现质量退化.鉴于此,提出一种基于深度多先验学习的水下图像增强网络模型.首先,在水下光学成像物理模型先验的指导下获得4个水下图像的变体,采用包含5个U-Net结构的单独特征处理模块,学习得到5个私有特征图;然后,抽取每个U-Net结构的上采样特征图,通过联合特征处理模块,学习得到一个公有特征图;最后,利用特征融合模块,将私有特征图和公有特征图统一表征,生成增强后的水下图像.实验结果表明,与其他多种水下图像增强网络模型相比,所提模型对水下图像质量的增强更具有效性,在多个质量评价指标上均获得了优异性能.
Underwater Image Enhancement Model Based on Deep Multi-Prior Learning
Underwater images are an important carrier of marine information.High-quality and clear underwater images are an important guarantee for a series of underwater operations such as marine resource exploration and marine safety monitoring.Underwater images will experience quality degradation due to factors such as selective absorption and scattering of light.In view of this,an underwater image enhancement network model based on deep multi-prior learning is proposed.First,four variants of underwater images are obtained under the prior guidance of the underwater optical imaging physical model,and a separate feature processing module containing five U-Net network structures is used to learn five private feature maps;then,the up-sampling feature maps from each U-Net structure are extracted,and through a joint feature processing module,a public feature map is learned;finally,the feature fusion module is used to uniformly represent the private feature map and the public feature map to generate an enhanced underwater image.Experimental results show that compared with various underwater image enhancement network models,the proposed model is more effective in enhancing underwater image quality.It has achieved excellent performance in multiple quality evaluation indicators.

underwater image enhancementdeep learningmulti-prior informationjoint feature processing

欧阳、黄建峰、袁容

展开 >

成都大学机械工程学院,四川 成都 610106

水下图像增强 深度学习 多先验信息 联合特征处理

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)