首页|基于注意力机制的背光图像增强

基于注意力机制的背光图像增强

扫码查看
当光源位于物体的背面时,所拍摄到图像会存在昏暗的前景和明亮的背景,这种非均匀的光照分布严重影响了图像的整体视觉质量.针对现有的图像增强方法难以有效解决背光图像的非均匀光照分布问题,提出了一种由注意力机制引导的背光图像增强网络.首先,使用U型网络构建一个增强子网络(EM-Net)实现多尺度特征提取和重建;其次,引入一个条件子网络(Cond-Net)生成与输入图像相对应的背光区域注意力图,用以引导EM-Net重点关注图像中的背光区域;然后,采用一个双分支增强块(DEB),在充分提升背光区域亮度的同时保持前光区域的对比度;此外,在DEB的背光分支中引入空间特征变换(SFT)层,使EM-Net能够根据背光区域注意力图的指引着重提升背光区域的可视度;最后,为了加强背光区域和前光区域在增强过程中的关联性,提出一个双边互注意力模块(BMAM),进一步提升EM-Net的重建能力.实验结果表明,所提算法在背光数据集(BAID)和非均匀曝光数据集(LCDP)上获得的峰值信噪比(PSNR)分别比最新的背光图像增强算法CLIP-LIT高 3.15 dB和4.81 dB.相较于其他基于深度学习的图像增强算法,所提算法能够以较高的运行效率有效改善背光图像的视觉质量.
Attention Mechanism-Based Backlight Image Enhancement
When the light source is located on the back of the object,the captured image has a dark foreground and a bright background.This non-uniform light distribution significantly affects the overall visual quality of the image.As existing image enhancement methods have difficulty in effectively solving the non-uniform illumination problem of backlit images,this study proposes a backlight image enhancement network guided by an attention mechanism.First,a U-shaped network is used to construct an enhancement subnetwork(EM-Net),to achieve multiscale feature extraction and reconstruction.Second,a condition subnetwork(Cond-Net)is introduced to generate a backlight area attention map to guide the EM-Net to focus on the backlight area in the image.Then,using a dual-branch enhancement block(DEB),the brightness of the backlight area is fully enhanced while maintaining the contrast of the front-light area.In addition,a spatial feature transformation(SFT)layer is introduced in the backlight branch of the DEB,allowing EM-Net to focus on improving the visibility of the backlight area according to the guidance provided by the area attention map.Finally,to strengthen the correlation between the backlight and front-light areas during the enhancement process,a bilateral mutual attention module(BMAM)is proposed to further improve the reconstruction ability of the EM-Net.Experimental results show that the peak signal to noise ratio(PSNR)metric obtained by the proposed algorithm on the backlight data set(BAID)and non-uniform exposure local color distribution prior dataset(LCDP)exceeds that obtained by the latest backlight image enhancement contrastive language-image pretraining(CLIP)-LIT algorithm by 3.15 dB and 4.81 dB,respectively.Compared with other image enhancement algorithms based on deep learning,the proposed algorithm can effectively improve the visual quality of backlit images with higher computing efficiency.

image processingbacklit image enhancementattention mechanismnon-uniform illumination

韩冯刚、常侃、夏淑成、邰旭鑫

展开 >

广西大学计算机与电子信息学院,广西 南宁 530004

广西大学广西多媒体通信与网络技术重点实验室,广西 南宁 530004

图像处理 背光图像增强 注意力机制 非均匀光照

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)