首页|基于深度学习的厄米-高斯光束模式分解

基于深度学习的厄米-高斯光束模式分解

扫码查看
厄米-高斯(HG)光束模式分解在量子通信和超分辨成像等领域有重要应用,基于深度学习的传统卷积神经网络可以基于单幅光强图实现光场的模式分解且系统构成较为简单.研究了基于新型网络架构Swin Transformer的HG光强图的模式分解和重构.实验上使用HG00、HG10、HG01、HG20、HG11和HG02共6个模(权重和相位是随机值)的叠加光场作为输出光场,通过采集、预处理输出光场强度图和训练网络,完成对输入光场的各阶HG高阶模的强度图像的权重和相位的估计.实验结果表明,当涉及6个本征模时,该方案的权重预测误差为0.05,相位误差为0.15.使用预测出的权重和相位对光强图进行重建,发现输入光强图和预测光强图的相似度很高.这项工作对大容量量子通信、空间量子测量以及超分辨成像具有一定参考意义.
Modal Decomposition of Hermite-Gaussian Beams Through Deep Learning
Hermite-Gaussian(HG)beam mode decomposition has important applications in quantum communications and super-resolution imaging.The traditional convolutional neural network based on deep learning can realize mode decomposition of light field intensity and phase based on a single intensity image of HG beams,and the system is simple.In this study,the mode decomposition and reconstruction of a Hermite-Gaussian intensity diagram based on the new network architecture of Swin Transformer are investigated.In an experiment,the superimposed light fields of six modes(where the weights and phases are random values)of HG00,HG10,HG01,HG20,HG11,and HG02 are used as the output light fields.Experimental results show that when six eigenmodes are involved,the weight prediction error of the scheme is 0.05 and the phase is 0.15.In reconstructing the intensity image using the predicted weights and phases,we find that the input intensity image is very similar to the predicted intensity image.This work is of certain significance for large-capacity quantum communications,spatial quantum measurements,and super-resolution imaging.

Hermite-Gaussian beamsmodel decompositiondeep learningincoherent beams

彭姝、郭旭联、马天宝、刘奎、郜江瑞

展开 >

山西大学光电研究所量子光学与光量子器件国家重点实验室,山西 太原 030006

山西大学极端光学协同创新中心,山西 太原 030006

厄米-高斯光束 模态分解 深度学习 非相干光束

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(23)