首页|基于Kriging模型和强化学习的激光直接能量沉积成形尺寸控制

基于Kriging模型和强化学习的激光直接能量沉积成形尺寸控制

扫码查看
针对传统的比例积分微分控制方法存在随工艺参数变化需重新整定控制器参数的缺陷,采用了一种基于Kriging预测模型的强化学习校正框架,用于预测和控制沉积层尺寸,而无需进行参数整定.该框架通过不断迭代学习工艺参数对沉积层尺寸的影响,对内置的Kriging预测模型进行校正,提高其预测性能,从而输出更优的工艺参数.实验结果表明,该框架能够抑制熔道回流效应,在减小成形件累计高度误差的同时,有效抑制宽度误差,从而有效提升激光直接能量沉积零件的尺寸精度.
Dimensional Control of Laser Direct Energy Deposition Forming Based on Kriging Model and Reinforcement Learning
In view of the defect of the traditional proportional-integral-derivative control method,which needs to reset the controller parameters as the process parameters change,this study employs a reinforcement learning correction framework based on the Kriging model,where the framework is specifically designed to predict and control melt pool dimensions,thereby eliminating the need for parameter tuning.Through iterative learning of the effects of process parameters on melt pool dimensions,the framework corrects the embedded Kriging prediction model by enhancing its predictive performance and yielding more optimized process parameters.Experimental results demonstrate that this framework can mitigate the melt pool backflow effect,proficiently manage width errors,reduce cumulative height errors in formed components,and significantly enhance the dimensional accuracy of laser direct energy deposition components.

laser direct energy depositionKriging modelreinforcement learningdimensional control

胡楷雄、李克、周勇、李卫东

展开 >

武汉理工大学交通与物流工程学院,湖北 武汉 430063

武汉理工大学襄阳示范区湖北隆中实验室,湖北 襄阳 441000

上海理工大学机械工程学院,上海 200093

激光直接能量沉积 Kriging模型 强化学习 尺寸控制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(23)