首页|视觉测量系统中基于深度学习的自动对焦方法

视觉测量系统中基于深度学习的自动对焦方法

扫码查看
针对传统对焦法需要采集较多的离焦图像、对焦耗时长、在视觉测量系统场景应用中存在限制等问题,提出了一种基于深度学习的自动对焦方法。该方法将自动对焦问题转化为图像的离焦距离预测问题,利用ShuffleNetv2与多层感知机构建轻量化深度回归网络并对工作场景中采集的目标图像数据集进行训练。通过合理的对焦策略,利用两帧图像即可完成对焦,减少了对焦耗时,同时也可以避免传统对焦法因局部极值点导致对焦误差较大的问题。实验结果表明,该方法的对焦耗时仅为传统对焦法的15%~24%,对焦稳定性相比传统对焦法提升约为40%,具有对焦速度快、对焦稳定性高、模型复杂度低等优点,能够很好地应用于视觉测量系统中。
Autofocus Method Based on Deep Learning in the Visual Measurement System
Aiming at the problem that the traditional autofocus method needs to collect more defocused images,which greatly increases focusing time and limits its application in visual measurement systems,an autofocus method based on deep learning is proposed.This method transforms the autofocus problem into an image defocus distance prediction problem.First,a lightweight deep regression network is constructed using ShuffleNetv2 and a multilayer perceptron(MLP).The network is subsequently trained on the collected target image dataset in the working scene.Through a reasonable focusing strategy,two frames of images can be used to complete the focusing,which reduces the focusing time,thereby circumventing the problem of large focusing error caused by local extreme points in the traditional autofocus method.The experimental results show that the focusing time of this method is only 15%‒24%of the traditional autofocus method,and the focusing stability is improved by about 40%compared with the traditional autofocus method,providing the advantages of fast focusing speed,high focusing stability,and low model complexity,which can be well applied to the visual measurement system.

autofocusdeep learningimaging systemimage processingvisual measurement

郑博文、刘绍锦、沈铖武、李建荣、韩岩、孙浩洋

展开 >

中国科学院长春光学精密机械与物理研究所,吉林 长春 130033

中国科学院长春光学精密机械与物理研究所相对位姿测量实验室,吉林 长春 130033

中国科学院大学,北京 100049

自动对焦 深度学习 成像系统 图像处理 视觉测量

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)