首页|基于改进DenseNet的车辆尺寸测量和信息识别方法

基于改进DenseNet的车辆尺寸测量和信息识别方法

扫码查看
针对现有研究中缺乏能够综合测量车辆外廓尺寸并精确识别车辆信息的方法,提出一种新的车辆尺寸和信息识别方法。首先,通过YOLO V5s网络实现目标车辆的自动识别,并建立了一个包含车辆型号、尺寸、轴数、轴距、悬架和轮胎参数等详细信息的车辆数据库。接着,利用convolutional encoder-decoder network(CEDN)提取出车辆轮廓,并通过膨胀腐蚀算法对轮廓进行优化。为了提高处理速度并减少计算资源需求,将深度可分离卷积技术融合进DenseNet。最终,将车辆轮廓图输入至优化后的DenseNet,以预测车辆的具体尺寸。实验结果显示,该方法能够在宽度和高度测量上实现±60 mm的误差范围,并将长度测量的误差控制在±85 mm以内。此外,该方法还能提供车辆的轴数、轴距、悬架和轮胎参数等附加信息。这表明结合图像识别和深度学习技术,能够有效地测量车辆尺寸并识别相关信息,对于提高动态称重系统等应用的准确性具有重要价值。
Vehicle Size Measurement and Information Identification Using an Improved DenseNet Approach
To address the limitations of existing research methods in terms of comprehensively measuring vehicle dimensions and accurately identifying vehicle information,this study proposes an innovative method for vehicle size and information recognition.First,the YOLO V5s network automatically recognizes target vehicles,followed by the creation of a vehicle database containing detailed attributes such as vehicle model,size,number of axles,wheelbase,suspension,and tire specifications.Second,vehicle contours are extracted using the convolutional encoder-decoder network and optimized using the dilation corrosion algorithm.To improve processing speed and reduce computational resource requirements,a depthwise separable convolution technique is integrated into the DenseNet network.Finally,the optimized DenseNet network predicts the vehicle's specific dimensions from the contour map.The experimental results show that the proposed method achieves width and height measurement errors within a range of±60 mm,and length measurement errors within±85 mm.In addition,this method provides information on number of axles,wheelbase,suspension,and tire parameters.This study demonstrates that by integrating image recognition and deep learning techniques,it is possible to effectively measure vehicle dimensions and identify relevant information,resulting in substantial improvements in accuracy for applications such as dynamic weighing systems.

weigh in motioncontour dimension measuringparameter identificationDenseNetcomputer vision

赵栓峰、姚健、李甲

展开 >

西安科技大学机械工程学院,陕西 西安 710054

动态称重 外廓尺寸测量 参数识别 DenseNet 计算机视觉

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)