首页|特征增强和度量优化的钢材表面缺陷检测

特征增强和度量优化的钢材表面缺陷检测

扫码查看
针对钢材表面缺陷检测中存在的小目标样本检测精度低、容易出现漏检和误检的问题,提出一种改进的YOLOv7算法。首先,引入Swin-Transformer进行特征提取,采用双分支回路设计将全局特征和局部特征交互融合;其次,采用分布移位卷积对高效层聚合网络进行改进,以增强局部特征提取能力;最后,采用加权的归一化Wasserstein距离和完全交并比度量方法作为回归损失函数,解决模型对小目标偏差较敏感的问题。在NEU-DET数据集上进行实验对比的结果表明,相较于原始算法,改进算法的平均精度均值提高8。8百分点,达到83。1%,提升了模型对钢材表面缺陷检测的精度,改善了对小目标样本的误检和漏检情况。此外,改进算法的检测帧率为71 frame/s,满足实时检测的需求。
Feature Enhancement and Metric Optimization for Defect Detection on Steel Surface
To address the challenges of low detection accuracy,frequent missed detections,and false detections in steel surface defect detection for small target samples,an improved YOLOv7 algorithm is proposed.First,the Swin-Transformer is introduced for feature extraction,and a dual-branch loop is employed to fuse global and local features interactively.Second,distribution shift convolution is utilized to improve the efficient layer aggregation network,thereby enhance its local feature extraction capability.Finally,the regression loss function incorporates the weighted normalized Wasserstein distance and complete intersection over union methods to reduce the sensitivity to small target deviations.Experimental comparisons on the NEU-DET dataset demonstrate that the improved algorithm increases the mean average precision by 8.8 percentage points,reaching 83.1%.Proposed algorithm improves the accuracy of steel surface defect detection and reduces false detections and missed detections for small target samples.In addition,the proposedd algorithm achieves a detection speed of 71 frames/s,meeting the requirements for real-time detection.

defect detectionfeature enhancementmetric optimizationTransformerYOLOv7

陈俊英、黄汉涛、李朝阳

展开 >

西安建筑科技大学信息与控制工程学院,陕西 西安 710055

缺陷检测 特征增强 度量优化 Transformer YOLOv7

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)