首页|基于改进YOLOv5s的轻量化交通标志识别检测算法

基于改进YOLOv5s的轻量化交通标志识别检测算法

扫码查看
为应对常见交通标志检测方法在光照条件不佳、捕获远距离小目标、复杂背景等情况下检测精度及模型计算效率不足的问题,提出一种改进的YOLOv5s算法,命名为BMGE-YOLOv5s.所提方法将YOLOv5s的原始骨干网络替换为BoTNet(bottleneck Transformer network),设计轻量化网络C3GBneckv2,引入GhostNetv2 bottleneck和高效的通道注意力机制,显著增强模型对交通标志的特征提取能力并降低参数量.为进一步提高对边界框的定位精度,采用MPDIoU损失函数进行优化.实验结果表明,改进后的网络模型在交并比阈值为0.5时的平均精度均值为93.1%,在同一数据集下相较基准模型提升3.3百分点,浮点运算数比基准模型减少9.375%,参数量减少~26.03%,检测速度提升~67.40%.所提算法有效平衡了鲁棒性和实时性,相比传统方法具有明显的性能优势.
Lightweight Traffic Sign Recognition and Detection Algorithm Based on Improved YOLOv5s
To address the inadequate detection precision and computational efficiency of common traffic sign detection methods under poor lighting conditions,capturing small distant targets,and in complex backgrounds,this study introduces an enhanced YOLOv5s algorithm,named BMGE-YOLOv5s.The proposed method employs BoTNet(bottleneck Transformer network)to replace the original backbone network of YOLOv5s.It also designs a lightweight network,C3GBneckv2,which integrates the GhostNetv2 bottleneck and an efficient channel attention mechanism,reducing the number of parameters while significantly enhancing the feature extraction capability for traffic signs.To further enhance the accuracy of bounding box localization,the MPDIoU loss function is utilized.Experimental results indicate that the improved network model achieves a mean average precision of 93.1%at an intersection ratio threshold of 0.5,indicating an improvement of 3.3 percentage points over the baseline model on the same dataset.Moreover,the proposed model demonstrates a 9.375%decrease in floating-point operations,a~25.98%decrease in the number of parameters,and a~67.40%increase in detection speed.The proposed algorithm effectively balances robustness and real-time performance,showing a clear performance advantage over traditional methods.

YOLOv5straffic sign recognition and detectiondeep learningattention mechanismlightweightMPDIoU loss function

刘菲、钟延芬、邱佳伟

展开 >

南昌航空大学土木与交通学院,江西 南昌 330063

江西省智慧建筑工程研究中心,江西 南昌 330063

南昌航空大学智慧建造研究中心,江西 南昌 330063

YOLOv5s 交通标志识别与检测 深度学习 注意力机制 轻量化 MPDIoU损失函数

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)