首页|基于BP神经网络的光子计数激光雷达点云滤波

基于BP神经网络的光子计数激光雷达点云滤波

扫码查看
随着高灵敏探测技术的不断发展,单光子量级的测量灵敏度成为了可能,结合高精度的计时技术,基于时间相关单光子计数的激光雷达应运而生,其能够大幅提高测量的分辨率和精度.然而,单光子量级的高灵敏探测极易受环境噪声的影响,光子计数激光雷达在测量的过程中会产生大量的噪声数据.为了克服噪声的影响,提出一种基于BP神经网络的光子计数激光雷达点云数据去噪算法.通过选取点云数据特征值,进行归一化处理,以训练BP神经网络,最终达到精确的二分类去噪效果.所提算法能够减小传统去噪算法中引入的人为误差,在多种探测环境下具备出色去噪性和强大适应性.在强背景噪声探测条件下,该算法的F数仍能达到0.9773.在模拟各种背景噪声的条件下,所提算法具有良好的信息提取能力,并通过对ICESAT-2点云实验数据进行的验证,进一步证明该算法的一致性优势.
Photon-Counting Lidar Point Cloud Filtering Using a Backpropagation Neural Network
Advances in high-sensitivity detection technology have made single-photon-level sensitivity feasible.Combined with high-precision timing technology,laser lidar using time-dependent single-photon counting has emerged,offering substantial improvements in measurement resolution and accuracy.However,this high-sensitivity detection is highly vulnerable to environmental noise,generating considerable noise data during photon-counting lidar measurements.To address the influence of noise,a photon-counting lidar point cloud data denoising algorithm based on a backpropagation(BP)neural network is proposed.By selecting and normalizing the point cloud data feature values,the BP neural network is trained to accurately perform binary classification denoising.The proposed algorithm minimizes the human error associated with conventional denoising algorithms,delivers excellent denoising performance,and is strongly adaptable to various detection environments.Even under strong background noise detection conditions,the proposed algorithm obtains an F-number of 0.9773.In addition,the proposed algorithm exhibits good information extraction capabilities under simulated background noise conditions,and its consistency advantage is further confirmed through validation on ICESAT-2 point cloud experimental data.

photon counting lidarneural networkphoton point cloudfiltering method

于士澳、孔伟、马汝佳、黄庚华

展开 >

国科大杭州高等研究院,浙江 杭州 310024

中国科学院大学,北京 100049

中国科学院上海技术物理研究所中国科学院空间主动光电技术重点实验室,上海 200083

光子计数激光雷达 神经网络 光子点云 滤波方法

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)