首页|基于改进RandLA-Net的道路标线点云提取方法

基于改进RandLA-Net的道路标线点云提取方法

扫码查看
针对高精度地图中道路标线提取精度差的问题,提出一种基于改进RandLA-Net的道路标线点云提取方法.道路标线具有平缓、起伏程度小、与水平面近似平行、回波强度大等空间特征,因此利用全方差、平整度、垂直度与回波强度可以将道路标线与其他地物区分开来,从而提高RandLA-Net邻域点云的差异性与相似性.首先分别计算点云的3种协方差特征,然后利用经特征融合模块改进后的RandLA-Net对其进行特征融合与语义分割,最后将分割结果通过欧氏聚类精细化处理,得到最终的道路标线点云.采用Toronto-3D与WHU-MLS公开数据集对所提方法进行验证,分别在语义分割阶段和道路标线提取阶段同常用的点云语义分割方法与传统阈值法进行对比,实验结果表明,所提方法能够提取更加完整、精确的道路标线点云.
Enhanced Road Marking Point Cloud Extraction Method Using Improved RandLA-Net
This paper proposes a road marking point cloud extraction method based on enhanced RandLA-Net to address the issue of inadequate accuracy in road marking extraction within high-precision maps.Road markings possess spatial characteristics such as smoothness,minimal undulation,approximate parallelism to the horizontal plane,and high echo intensity.To differentiate road markings from other features,we used total variance,flatness,perpendicularity,and echo intensity,thereby enhancing the distinction and similarity in RandLA-Net neighborhood point clouds.First,we calculated the three covariance features of the point cloud.Second,we applied the improved RandLA-Net feature fusion module to realize feature fusion and semantic segmentation.The segmentation results were then refined by Euclidean clustering to derive the final road marking point cloud.The proposed method was validated on the publicly available Toronto-3D and WHU-MLS datasets and compared with prevalent point cloud semantic segmentation methods and traditional thresholding techniques at the semantic segmentation and road marking extraction stages.The experimental results demonstrate that the proposed method provides more complete and accurate road marking point clouds.

LiDARroad markingdeep learningsemantic segmentation

范佳、李治霖、王勇

展开 >

天津城建大学地质与测绘学院,天津 300384

激光雷达 道路标线 深度学习 语义分割

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)