首页|结合空-谱自注意力与多粒度特征提取的高光谱图像分类

结合空-谱自注意力与多粒度特征提取的高光谱图像分类

扫码查看
在高光谱图像(HSI)的分类任务中,虽然基于卷积神经网络(CNN)的特征提取方法已经广泛应用并取得了显著的成绩,但其仍然存在感受野大小固定以及在提取局部特征时容易忽略不同空间和光谱间相关性的局限性.因此,提出一种融合多粒度CNN和空-谱自注意力机制(SSSA)的Transformer网络架构.该架构通过多粒度CNN对传统CNN进行优化,利用三维卷积(3DConv)和二维卷积(2DConv)提取空间和光谱特征以及深层空间特征,同时采用异构卷积(HetConv)精细化地提取多粒度特征,克服了传统CNN卷积核尺寸固定的限制.此外,对传统Transformer中的自注意力机制(SSA)进行改进,使得模型能够同时对空间和光谱信息构建全局相关性,解决了SSA忽略局部特征的问题.通过引入双通道深度可分离卷积(dual-channel DSConv)进行空-谱特征嵌入,实现了多粒度CNN与SSSA的有效衔接.实验结果表明,由于模型成功地提取了局部和全局特征,其在各数据集上的表现均优于其他主流HSI分类模型.
Hyperspectral-Image Classification Combining Spatial-Spectral Self-Attention and Multigranularity Feature Extraction
For hyperspectral image(HSI)classification,although convolutional neural network(CNN)-based feature extraction methods have been widely applied and have achieved notable results,they still have limitations such as fixed receptive-field sizes and a tendency to overlook spatial-spectral correlations when extracting local features.In this regard,a Transformer network architecture that integrates multigranularity CNN and spatial-spectral self-attention(SSSA)is proposed herein.This architecture optimizes traditional CNN using multigranularity CNN by employing three-dimensional and two-dimensional convolutions to extract spatial-spectral and deep spatial features.Meanwhile,heterogeneous convolution is employed to finely extract multigranularity features,thereby overcoming the limitation of fixed kernel size in traditional CNN.In addition,to solve the problem of the neglect of local features in the self-attention mechanism in traditional Transformers,the mechanism is improved to enable the involved model to simultaneously construct global correlations for spatial and spectral information.Moreover,by introducing dual-channel depth-separable convolution for spatial-spectral-feature embedding,an effective connection between multigranularity CNN and SSSA is achieved.Further,experimental results show that owing to the successful extraction of local and global features,the involved model outperforms other mainstream HSI classification models on various datasets.

hyperspectral image classificationTransformerconvolutional neural networknull-spectral featuresspace-spectral self-attention mechanism

魏林、陈哲、尹玉萍

展开 >

辽宁工程技术大学电子与信息工程学院,辽宁 葫芦岛 125105

辽宁工程技术大学基础教学部,辽宁 葫芦岛 125105

辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105

高光谱图像分类 Transformer 卷积神经网络 空-谱特征 空-谱自注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)