首页|基于正交投影的快速高光谱图像异常检测算法

基于正交投影的快速高光谱图像异常检测算法

扫码查看
针对低秩稀疏分解的异常检测算法在处理大量高光谱图像数据时运算效率显著降低的问题,提出一种基于正交投影的快速高光谱图像异常检测算法.首先将高光谱图像投影到背景正交子空间中,提高异常目标和背景的区分度,使异常目标与背景更加容易被分离.然后提出一种新的高光谱图像分解模型,并引入自动目标生成算法构造字典矩阵.所提分解模型利用字典矩阵的正交性,将高维图像数据矩阵映射成低维矩阵,降低待处理数据的维数和计算复杂度.将所提算法在3个真实图像数据集上进行实验,检测精度分别为0.9964、0.9984、0.9999.此外,所提算法在各数据集上的平均运算时间相较于对比算法中的最短的运算时间缩短了90%以上.结果表明,所提算法在保证异常目标检测效果的同时运算效率远高于其他算法.
Fast Hyperspectral Image Anomaly Detection Based on Orthogonal Projection
The operating efficiency of an anomaly detection algorithm based on low-rank sparse decomposition decreases significantly when it is used to process a large amount of hyperspectral image data.Thus,a fast hyperspectral image anomaly detection algorithm based on orthogonal projection is proposed in this study.First,a hyperspectral image is projected onto background orthogonal subspace to improve the distinction between the background and anomalous objects,so as to separate them easily.Next,a new hyperspectral image representation model is proposed,and an algorithm for automatic target generation is introduced to construct a dictionary matrix.A high-dimensional image data matrix is mapped into a low-dimensional matrix using this model with the orthogonality of the dictionary matrix,so as to reduce the dimensionality of the data and the computational complexity of the algorithm.Proposed algorithm is tested on three real image datasets and it achieves detection accuracies of 0.9964,0.9984,and 0.9999,respectively.In addition,the average operation time taken by proposed algorithm on the three datasets is more than 90%shorter than the shortest operation time taken by comparative algorithms.Experimental results on three datasets demonstrate that the computational efficiency of proposed algorithm is higher than those of other algorithms that ensure detection performance.

hyperspectral image processinganomaly detectionorthogonal projectionlow-rank sparse decomposition

何开星、蒋峥、刘斌、张效康

展开 >

武汉科技大学信息科学与工程学院,湖北 武汉 430081

武汉科技大学冶金自动化与检测技术教育部工程研究中心,湖北 武汉 430081

高光谱图像处理 异常检测 正交投影 低秩稀疏分解

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)