首页|基于物理约束和云图生成的台风等级预测方法

基于物理约束和云图生成的台风等级预测方法

扫码查看
卫星遥感技术提供的高质量的台风卫星云图数据是目前确定台风强度等级的手段之一,该技术已广泛应用于台风预报工作.针对遗忘门云层特征选择性丢失和物理预测结果模糊原截断操作导致的边缘信息损失问题,提出一种基于物理约束和台风云图生成的台风等级预测方法CPGANTyphoon,CPGANTyphoon使用卷积网络近似物理方程,通过先验知识优化特征提取,结合对抗训练提升图像质量,联合损失函数减少视觉差异,最后利用生成图像进行台风等级预测.实验结果表明,CPGANTyphoon模型生成预测图像的结构相似度分数为0.916,峰值信噪比分数为30.36,模糊c均值准确率为0.981,台风等级预测总体准确率为0.985,所提模型能准确生成未来时刻的台风云图并预测台风等级.
Typhoon Class Prediction Method Based on Physical Constraints and Cloud Map Generation
Satellite remote sensing technology provides higher-quality typhoon satellite cloud map data,which is a major means of determining the intensity levels of typhoons,and this technology has been widely applied in typhoon forecasting.To address the problems of selective loss of cloud features in the oblivion gate and the loss of edge information caused by the fuzzy original truncation operation of the physical prediction results,this study proposes a typhoon class prediction method based on physical constraints and cloud map generation(CPGANTyphoon).The proposed method uses convolutional networks to approximate the physical equations,optimizes the feature extraction through prior knowledge,combines with adversarial training to improve image quality,uses a joint loss function to reduce visual disparities,and finally predicts typhoon levels for the generated images.Experimental results show that the CPGANTyphoon model generates the predicted images with a structural similarity index measure score of 0.916,a peak signal-to-noise ratio(PSNR)score of 30.36,a fuzzy c-mean accuracy of 0.981,and an overall accuracy of 0.985 for typhoon level prediction.The model can accurately generate typhoon cloud maps and predict typhoon levels for future moments.

remote sensing imagephysical constraintgenerative adversarial networkimage predictiontyphoon level

郑宗生、周文睆、王政翰、高萌、霍志俊、张月维

展开 >

上海海洋大学信息学院,上海 201306

广州气象卫星地面站,广东 广州 510640

遥感图像 物理约束 生成式对抗网络 图像预测 台风等级

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)