首页|基于混合回环检校实现激光SLAM优化和高精度三维地图构建

基于混合回环检校实现激光SLAM优化和高精度三维地图构建

扫码查看
在室外的大场景环境测量中,采用激光同步定位与地图构建(SLAM)进行三维地图构建时,基于激光雷达传感器的里程计位姿容易产生累计误差,会导致三维点云地图的错位漂移甚至建图失败,严重影响激光SLAM三维地图构建的精度和应用.硬件描述语言(HDL)-Graph-SLAM是目前一种轻量化的激光SLAM建图算法,虽然其在建图过程中加入了回环检测模块,但仅以距离作为约束,在大场景或楼道等环境单一的类似场景中,激光里程计累计误差与环境特征单一的特点相互作用容易形成错误的闭环,大致基于距离的关联无法在当前点云帧与历史点云帧之间找到正确的对应关系,使点云地图出现错位漂移.为了提高大回环检测的校准精度,提出了一种混合式回环检校的激光SLAM算法,即利用基于空间位置方法(距离阈值)和基于外观相似性方法(词袋模型)两种方法的融合处理,来搜索获取候选的回环帧,有效提升回环检测算法的鲁棒性.实验验证表明,与单纯采用距离阈值的HDL-Graph-SLAM算法相比,本文提出的混合回环检校方法显著提升了在大场景室外环境下的激光里程计位姿估计精度,其绝对轨迹估计精度提高了16%,从而有效提高了三维建图的准确度.
Optimization of Laser SLAM and High Precision 3D Map Construction Based on Hybrid Loop Calibration
In outdoor large-scene environment measurements,when laser simultaneous loca lization and mapping(SLAM)is used for three-dimensional(3D)map construction,the odometer position based on the LiDAR sensor can easily produce cumulative errors,leading to dislocation drift and even mapping failure of the 3D point cloud map,which seriously affects the accuracy and application of LiDAR SLAM 3D map construction.Hardware description language(HDL)-Graph-SLAM is a lightweight laser SLAM mapping algorithm that adds a loopback detection module in the mapping process but only takes distance as a constraint.In large scenes or corridors and other similar scenes with a single environment,the interaction between the cumulative error of the laser odometer and the single environmental feature can easily lead to an error in the closed loop,whereby the distance-based association cannot find the correct correspondence between the current point cloud frame and historical point cloud frame,leading to a dislocation drift in the point cloud map.To improve the calibration accuracy of large loop detection,this study proposes a hybrid loop calibration laser SLAM algorithm,which uses the fusion processing of two methods based on the spatial position method(distance threshold)and appearance similarity method(bag of words model),to search for and obtain candidate loop frames,which effectively improve the robustness of the loop detection algorithm.Experimental results show that compared with the simple HDL-Graph-SLAM with only distance threshold algorithm,the hybrid loopback calibration method proposed in this study significantly improves the accuracy of laser odometer pose estimation in large outdoor environments,increasing absolute trajectory estimation accuracy by 16%,thus effectively improving 3D mapping accuracy.

hybrid loopback detectionthree-dimensional mappingspatial location associationappearance similarity associationbag of words model

聂栋栋、李旭东、程霄霄、李思纯、宋伟润、王锟、王建军

展开 >

山东理工大学机械工程学院,山东 淄博 255049

山东信质检测有限公司,山东 淄博 255000

山东天骏清洁设备有限公司,山东 淄博 255020

混合式回环检测 三维地图构建 空间位置关联 外观相似性关联 词袋模型

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)