首页|基于多模态融合的遥感小目标检测

基于多模态融合的遥感小目标检测

扫码查看
针对遥感图像目标检测中检测目标与背景相似度高、目标位置定位不准确、特征提取困难等问题,提出一种基于多模态融合的遥感小目标检测算法.在特征提取部分,引入多模态融合,从不同模态中提取共享信息和特殊信息,对不同模态之间的信息进行互补,提高模型的信息提取能力;在特征融合部分,提出一种感受野空间注意卷积来感知特征图的空间位置信息,充分考虑感受野中每个特征的重要性;在预测部分,采用形状交并比边框回归损失函数,在考虑真实框和预测框的几何关系的同时,更加关注边界框的固有属性,进一步提高回归的准确性.在VEDAI和NWPU数据集上的实验结果表明,改进后算法的平均精度均值为72.83%和93.5%,相较于基准模型提高了8.40百分点和2.7百分点,与其他先进算法相比所提算法有效降低了误检率和漏检率.
Remote Sensing Small Target Detection Based on Multimodal Fusion
This paper proposes a remote sensing small target detection algorithm based on multimodal fusion to address the problems of high similarity between detection targets and background,inaccurate target location,and feature extraction challenges.The feature extraction component utilizes multimodal fusion to extract shared and specific information across different modalities,complementing the information between different modes,and enhancing the model's information extraction capabilities.In the feature fusion component a receptive field spatial attention convolution is implemented to accurately perceive the spatial positions within the feature map and prioritize the importance of each feature in the receptive field.For the prediction component the Shape-intersection over union border regression loss function is used.This function considers not only the geometric relationship between the ground truth and the prediction boxes but also the inherent characteristics of the bounding box to enhance the regression accuracy.Experimental evaluations on the VEDAI and NWPU datasets demonstrate that the enhanced algorithm achieves mean average precisions of 72.83%and 93.5%,respectively,surpassing the baseline model by 8.40 percentage points and 2.7 percentage points.Compared to other advanced algorithms,the proposed algorithm effectively reduces both the false detection and missed detection rates.

multimodal fusionreceptive fieldspatial position informationborder regressiongeometric relationship

刘凡凡、朱成梅、赵娜娜、吴晶华

展开 >

安徽建筑大学机械与电气工程学院,安徽 合肥 230601

中国科学院合肥物质科学研究院常州先进制造技术研究所,江苏 常州 213164

多模态融合 感受野 空间位置信息 边框回归 几何关系

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)