首页|基于机载LiDAR的隐患滑坡增强显示与识别研究

基于机载LiDAR的隐患滑坡增强显示与识别研究

扫码查看
针对传统滑坡监测方法在复杂地形和植被覆盖区域的局限性,提出了一种基于机载激光雷达技术的滑坡隐患增强显示与识别方法.研究结合山体阴影、斜率分析、红色立体图、天空视域因子等多种地形可视化技术构建了高精度数字高程模型.使用支持向量机(SVM)模型对融合后的影像进行分类,以识别滑坡易发区域.实验结果表明,该方法能够有效识别和增强显示滑坡隐患区域,而基于SVM的滑坡易发区域识别精度达到了83.86%.所提方法不仅增强了滑坡隐患区域的可视化效果,还提高了滑坡易发区域识别的精确度,对滑坡灾害的预防和应急响应提供了有效的技术支持.
Enhanced Display and Identification of Hidden Landslides Based on Airborne LiDAR
To address the limitations of conventional methods for monitoring landslide in complex terrains and vegetation-covered areas,this paper proposes an enhanced display and recognition method for landslide hazard based on airborne LiDAR technology.In particular,the construction of a high-precision digital elevation model is adopted in conjunction with various terrain-visualization techniques,such as mountain shadows,slope analysis,red stereo maps,and sky field of view factors.The support vector machine(SVM)model is used to classify fused images and identify landslide-susceptible areas.Experimental results show that this method effectively identifies and enhances the display of landslide hazard areas,and that its accuracy in identifying landslide-susceptible areas based on the SVM is 83.86%.The proposed method not only enhances the visualization of landslide hazard areas but also improves the accuracy in identifying landslide-susceptible areas,thus providing effective technical support for landslide disaster prevention and emergency response.

airborne LiDARterrain visualizationimage fusionsupport vector machinelandslide identification

贾越、夏永华、吕杰、赵昌福

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

云南大学高原山区空间信息测绘技术应用工程研究中心,云南 昆明 650093

昆明理工大学城市学院,云南 昆明 650051

机载激光雷达 地形可视化 影像融合 支持向量机 滑坡识别

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)