首页|基于单帧图像的自动化相位解耦方法

基于单帧图像的自动化相位解耦方法

扫码查看
定量相位显微技术可对透明样本进行无损、免标记成像,适合于生物细胞研究.但样本折射率和物理厚度耦合在相位数据中无法单独呈现,解耦方法需要烦琐的实验和计算流程,不能满足生物医学研究和应用中自动化实时检测的需求.针对这一不足,本文基于U-Net,在残差结构与密集连接模块的思想下,通过添加注意力机制构建了一种新型语义分割网络,探究基于单幅相位图对均匀介质样本物理厚度和折射率解耦的方法.通过聚苯乙烯微球相位图构成的数据集训练模型,对具有不同几何特征的成熟红细胞样本实现了相位数据解耦,单帧相位分离得到的平均折射率相对误差为0.9%.该方法仅需样本任意方向的单幅相位图,借助标准样本训练神经网络模型以实现对特异性较高的生物细胞样本化学、物理信息的定量提取,具有数据方便采集、计算量小的特点,可为相位信息自动化定量分析提供参考.
Automatic Phase Decoupling Based on a Single-Frame Image
Quantitative phase microscopy is capable of achieving nondestructive and label-free imaging of transparent samples,rendering it suitable for biological cell research.However,the coupling of sample refractive index and physical thickness cannot be presented separately in phase data.Decoupling methods require tedious experimental and computational processes and thus cannot meet the needs of automated real-time detection in biomedical research and applications.To address this issue,this study constructs a new semantic segmentation network based on U-Net by adding the attention mechanism under the idea of a residual structure and dense connection module.This enables exploration of the method of decoupling the physical thickness and refractive index of uniform medium samples based on a single-phase map.The model was trained on a dataset comprising polystyrene microsphere phase maps,and phase data decoupling was achieved for samples of mature red blood cells with different geometric features.The relative error of the average refractive index obtained via single-frame phase separation was 0.9%.This method requires only a single-phase map of the sample in any direction and trains a neural network model using standard samples for highly specific quantitative extraction of chemical and physical information from biological cell samples.Moreover,it has the characteristics of convenient data collection and low computational complexity and can serve as a reference for automated quantitative analysis of phase information.

phase imagingphysical thicknessrefractive indexdeep learningdata set

王姣姣、黄锦槟、徐一新、徐媛媛、季颖

展开 >

江苏大学物理与电子工程学院,江苏 镇江 212013

相位成像 物理厚度 折射率 深度学习 数据集

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)