首页|基于跨域特征融合的低光图像增强算法

基于跨域特征融合的低光图像增强算法

扫码查看
针对低光条件下图像质量下降的情况,低光图像增强方法旨在提高退化图像的亮度、色彩丰富度等可见细节,使其更清晰、更符合人类视觉期望.基于深度学习的增强方法取得了显著进展,但传统的卷积神经网络在特征提取过程中存在局部性的限制,导致网络难以有效建模图像像素间的长距离关系.相比之下,Transformer模型利用自注意力机制能够更好地捕捉像素间的长距离依赖性.然而,现有研究表明,全局性质的自注意力机制会导致网络缺乏空间局部性,进而影响基于Transformer架构的网络对局部特征细节的处理能力.基于此,提出一种新颖的低光图像增强网络——MFF-Net.采用跨域特征融合的原理,融合卷积神经网络和Transformer的优势,以获得既包含多尺度信息又包含多维度信息的跨域特征表示.此外,为了保持特征语义的一致性,特别设计了一个特征语义转换(ST)模块.在公共低光数据集上的实验结果表明,所提MFF-Net相较于主流方法取得了更好的增强效果,并且生成的图像视觉质量更为出色.
Low-Light Image Enhancement via Cross-Domain Feature Fusion
To address the decline in the image quality under low-light conditions,low-light image enhancement methods aim to improve the visible details such as brightness and color richness of degraded images to produce clearer images that align more closely with human visual expectations.Although remarkable progress has been made in deep learning-based enhancement methods,traditional convolutional neural networks have limitations in terms of feature extraction due to locality,rendering the effective modeling of long-distance relationships between image pixels challenging for the network.In contrast,the Transformer model utilizes the self-attention mechanism to better capture long-range dependencies between pixels.However,existing research reveals that global self-attention mechanisms can lead to a lack of spatial locality in networks,thereby deteriorating the processing ability of transformer-based networks for local feature details.Therefore,in this study,a novel low-light image enhancement network,MFF-Net,is proposed.The principle of cross-domain feature fusion is adopted to integrate the advantages of convolutional neural network and Transformer to obtain cross-domain feature representations containing multiscale and multidimensional information.In addition,to maintain feature semantic consistency,a feature semantic transformation module is specially designed.Experimental results on public low-light datasets show that the proposed MFF-Net achieves better enhancement effects than mainstream methods,with the generated images exhibiting better visual quality.

low-light image enhancementTransformerconvolutional neural networkself-attention mechanism

陈彬、陈克远、伍世虔

展开 >

武汉科技大学信息科学与工程学院,湖北 武汉 430081

武汉科技大学机器人与智能系统研究院,湖北 武汉 430081

低光图像增强 Transformer 卷积神经网络 自注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)