首页|基于V形金字塔双边特征融合的语义分割网络

基于V形金字塔双边特征融合的语义分割网络

扫码查看
针对目前语义分割网络存在的小尺度目标漏分割、边缘分割不准确与深浅层特征信息融合低效等问题,提出一种V形金字塔双边特征融合网络(VPBF-Net).编码阶段,V形空洞空间金字塔池化(VASPP)模块采用多个并行分支交互连接结构,增强各分支局部语义信息之间的信息交互,采用多分支特征分层融合,降低网格伪影效应.坐标注意力模块用于为提取到的深层语义信息分配权重,增强网络对分割目标的关注度.解码阶段,设计了双边注意力特征聚合模块,通过多尺度深层语义信息指导浅层特征融合,捕获不同尺度的浅层特征表示,使得深浅层特征融合更加高效.在PASCAL VOC 2012数据集和Cityscapes数据集上进行了实验,所提方法的平均交并比分别达到了83.25%和77.21%,取得了较为先进的结果.与其他方法相比,所提方法对于小尺度目标分割更加准确,缓解了漏分割与误分割的问题.
Semantic Segmentation Network Based on V-Shaped Pyramid Bilateral Feature Fusion
Herein,a V-shaped pyramid bilateral feature fusion network(VPBF-Net)is proposed to address small-scale target missing segmentation,inaccurate edge segmentation,and inefficient fusion of deep and shallow feature information in current semantic segmentation networks.In the encoding stage,a V-shaped atrous spatial pyramid pooling(VASPP)module adopts multiple-parallel-branch interactive connection structures to enhance the information exchange between the local semantic information of each branch.In addition,multibranch feature hierarchical fusion is adopted to reduce grid artifact effects.Furthermore,a coordinate attention module is used to assign weights to the extracted deep semantic information,enhancing the network's attention to the segmentation target.In the decoding stage,a bilateral attention feature aggregation module is designed to guide shallow feature fusion through multiscale deep semantic information,thereby capturing different-scaled shallow feature representations and achieving more efficient deep and shallow feature fusion.Experiments are conducted on the PASCAL VOC 2012 dataset and Cityscapes dataset,the proposed method achieves average intersection to union ratios of 83.25%and 77.21%,respectively,indicating advanced results.Compared with other methods,the proposed method can more accurately perform small-scale object segmentation,alleviating missed segmentation and misclassification.

semantic segmentationbilateral networksV-shaped atrous spatial pyramid poolingbilateral attention features aggregationcoordinate attention

王铮、李文元

展开 >

天津大学微电子学院,天津 300072

语义分割 双边网络 V形空洞空间金字塔池化 双边注意力特征聚合 坐标注意力

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(24)