首页|顾及多尺度监督的点云语义分割

顾及多尺度监督的点云语义分割

扫码查看
针对复杂场景点云分割精度不高、神经网络隐藏单元缺乏直接监督,难以提取语义明确的点云特征等问题,提出了 一种将多尺度监督和SCF-Net相结合的点云语义分割网络.首先构建了一个类别信息生成模块,记录编码器中隐藏单元感受野内的类别,用于解码器中辅助分类器的监督学习.其次将解码阶段的点云类别预测任务分解成一系列点云感受野类别预测任务,通过对解码器中每一层添加辅助分类器,预测当前阶段点云感受野类别,编码阶段生成的类别信息作为标签监督网络学习.模型从粗到细地推理点云感受野类别,最终预测得到点云语义标签.实验结果表明,该方法能够有效提取点云关键信息,提高语义分割精度.
Point cloud semantic segmentation considering multi-scale supervision
In this paper,a point cloud semantic segmentation network combining multi-scale supervision and SCF-Net is proposed to address the problems of low segmentation accuracy of point cloud in complex scene,the lack of direct supervision in neural network hidden units,and the difficulty in extracting specific point cloud features.A category in-formation generation module is first constructed to record the receptive field categories of hidden unit in the encoder,which is used for the supervised learning of auxiliary classifiers in the decoder.Secondly,the point cloud category pre-diction task in the decoding stage is decomposed into a series of point cloud receptive field category prediction tasks.By adding auxiliary classifiers to each layer of the decoder,the point cloud receptive field category of the current stage is predicted and the category information generated in the coding stage is used as the label to supervise network learning.The model infers point cloud receptive field categories from coarse to fine,and finally predicts point cloud se-mantic labels.The experimental results show that the method can effectively extract key information of point cloud and improve the accuracy of semantic segmentation.

three-dimensional point cloudsemantic segmentationmulti-scale supervisiondeep learningSCF-Net

文阳晖、杨晓文、张元、韩燮、况立群、薛红新

展开 >

中北大学,计算机科学与技术学院,山西太原 030051

山西省视觉信息处理及智能机器人工程研究中心,山西太原 030051

机器视觉与虚拟现实山西省重点实验室,山西太原 030051

三维点云 语义分割 多尺度监督 深度学习 SCF-Net

国家自然科学基金国家自然科学基金山西省回国留学人员科研项目山西省科技成果转化引导专项

62272426621062382020-113202104021301055

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(2)
  • 24