首页|基于路侧激光雷达的多目标检测与跟踪算法

基于路侧激光雷达的多目标检测与跟踪算法

扫码查看
为了检测与跟踪城市交叉口复杂环境下的道路目标,提出一种基于路侧激光雷达的多目标检测与跟踪算法.首先利用背景减除法滤除背景点云,随后融合5帧点云并利用曲率体素聚类算法检测目标得到3 D包围盒信息,之后通过自适应阈值的双门控和生存周期管理策略,有效提升关联精度并减少了 目标丢失和误检,最后利用交互式多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据互联(JPDA)的融合算法完成道路目标的跟踪.试验结果表明,该算法在保证检测和跟踪性能基础上满足实时性要求,具有工程实用价值.
Multi-target detection and tracking algorithm based on roadside LiDAR
In order to detect and track road targets in complex urban intersection environments,a multi-target detection and tracking algorithm based on roadside LiDAR is proposed.Firstly,the background subtraction method is used to fil-ter out the background point cloud.Then,the curved-voxel clustering algorithm is used to detect the target to obtain 3 D bounding box information with fusing 5 frame point clouds.Subsequently,a double-validation gate and life cycle man-agement strategy with adaptive threshold are put forward,which effectively improves the accuracy of object matching and reduces object missing and false detection.Finally,the fusion algorithm of Interacting Multiple Model-Unscented Kalman Filter and Joint Probability Data Association was used to track road targets.The experimental results show that the algorithm meets the real-time requirements while ensuring detection and tracking performance,and has an engi-neering application value.

LiDARmulti-target detection and trackingcurved-voxel clusteringdata associationIMM-UKF algorithm

顾晶、胡梦宽

展开 >

无锡学院电子信息工程学院,江苏无锡 214105

南京信息工程大学电子与信息工程学院,江苏南京 210044

激光雷达 多目标检测与跟踪 曲率体素聚类 数据关联 IMM-UKF算法

南京信息工程大学滨江学院车路协同雷达关键技术研究创新项目

2022r031

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(2)
  • 15