首页|深度学习与图像融合的行人检测算法研究

深度学习与图像融合的行人检测算法研究

扫码查看
为解决智能辅助驾驶技术中可见光摄像机受光照和气候影响而导致行人目标识别困难的问题.通过研究图像融合技术,结合深度卷积神经网络,实现并改进了一种道路行人目标检测算法.方法是利用多源传感器图像融合技术,采用可见光相机与红外热成像相机融合的策略,以Faster RCNN算法为基础,从改进网络结构、特征融合、优化模型训练等方面展开研究,对复杂环境下的行人检测与定位跟踪展开研究,提出一种基于图像融合技术和改进的深度卷积神经网络的道路行人目标检测算法.实验结果表明,该算法对复杂气候环境下行人目标检测提高了检测效率和准确率,增加了智能辅助驾驶汽车的安全性.
Research on pedestrian detection algorithm combining deep learning and imaging fusion
The aim of this paper is to address the difficulty in pedestrian target recognition in intelligent assisted driv-ing systems due to the influence of light and climate on visible light cameras.A pedestrian target detection algorithm is implemented and improved by studying image fusion techniques in combination with deep convolutional neural net-works.Firstly,using multi-source sensor image fusion technology,the strategy of fusing visible light cameras and infra-red thermal imaging cameras,based on the Faster RCNN algorithm,a pedestrian target detection algorithm based on infrared thermal imaging technology and improved depth convolutional neural network is proposed.Then,the research is carried out in terms of improving network structure,feature fusion,optimising model training,and so on,and the re-search is carried out on pedestrian detection and localisation tracking in complex environments.Finally,the experimen-tal results show that this algorithm improves detection efficiency and accuracy for human target detection in complex climate environments,and increases the safety of intelligent assisted driving vehicles.

infrared thermal imagingvisible light imagesFaster RCNNdeep convolutional neural networkpedestrian target detection

姜柏军、钟明霞、林昊昀

展开 >

浙江商业职业技术学院,浙江杭州 310053

首都师范大学数学科学学院,北京 100089

红外热成像 可见光图像 Faster RCNN 深度卷积神经网络 行人目标检测

浙江省教育厅一般科研项目

Y202147947

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(2)
  • 7