首页|基于红外的TPA和IAOA-BiLSTM电路芯片故障诊断

基于红外的TPA和IAOA-BiLSTM电路芯片故障诊断

扫码查看
为了提高电路芯片故障诊断准确率,超参数设置的效率以及特征提取效率,提出一种基于时间模式注意力机制(TPA)的改进算数优化算法(IAOA)优化双向长短期记忆网络(BiL-STM)的电路故障诊断方法.首先,利用IAOA搜寻BiLSTM的最优超参数组合,提高模型诊断精度;然后使用TPA提取重要特征并分配权重,改善模型特征提取能力;最后,将红外摄像仪采集的红外温度数据输入到最优诊断模型中,实现电路芯片故障诊断.实验采用0~30 V可调稳压电源电路进行验证.结果表明,该模型对电路芯片故障诊断准确率高达98.27%,可实现对电路芯片的高准确率故障诊断.
Fault diagnosis of TPA and IAOA-BILSTM circuit chips based on infrared
To improve the accuracy of circuit chip fault diagnosis,the efficiency of hyperparameter setting and the effi-ciency of feature extraction,an improved arithmetic optimization algorithm(IAOA)based on temporal pattern atten-tion mechanism(TPA)is proposed to optimize the bi-directional long and short-term memory network(BiLSTM)for circuit fault diagnosis.Firstly,IAOA is employed to search for the optimal hyperparameter combinations of BiLSTM to improve the diagnostic accuracy of the model.Then TPA is used to extract important features and assign weights to en-hance the model feature extraction capability.Finally,the infrared temperature data collected by the infrared camera is inputted into the optimal diagnostic model to achieve circuit board chip fault diagnosis.The experiments are verified by using 0~30 V adjustable regulated power supply circuit board.The results show that the model for circuit chip fault diagnosis is as high as 98.27%,which can achieve high accuracy fault diagnosis for circuit board chips.

infrared technologychip fault diagnosislong short-term memory networkarithmetic optimization algo-rithmtemporal pattern attention mechanism

王力、朱猛、马江燕

展开 >

中国民航大学电子信息与自动化学院机载电子系统深度维修实验室,天津 300300

红外技术 芯片故障诊断 双向长短期记忆网络 算数优化算法 时间模式注意力机制

民航安全能力建设基金项目

[2023]50

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(4)
  • 20