首页|水泥生料成分的近红外光谱分析方法研究

水泥生料成分的近红外光谱分析方法研究

扫码查看
水泥是一种重要的基础建筑材料,对社会生产有着重大的影响,实现水泥生料成分的快速检测对建筑行业的发展具有重大意义.本文基于近红外光谱分析方法研究了水泥生料中的Al2O3、Fe2O3成分的含量检测,首先通过联合X-Y距离划分法对样品集进行划分,然后对训练集采用不同光谱预处理方法进行处理,最后采用偏最小二乘回归和支持向量回归分别对近红外光谱数据建立预测模型,并对预测结果进行分析比较.研究结果表明,采用S-G平滑预处理和偏最小二乘回归建模的近红外光谱分析方法检测效果较佳,Al2O3检测模型的决定系数R2为0.895,预测均方根误差(RMSEP)为0.072;Fe2O3检测模型的决定系数R2为0.732,RMSEP为0.023.研究结果为水泥生料成分的检测提供了有效的分析方法,促进了水泥行业的进一步发展.
Research on near infrared spectroscopy analysis method for cement raw material composition
Cement is an important basic building material that has a significant impact on social production.The rapid detection of cement raw material composition is of great significance for the development of the construction industry.The content detection of Al2O3 and Fe2O3 in cement raw meal based on near-infrared spectral analysis method is per-formed.Firstly,the sample set is divided by the combined X-Y distance division method.And the training set is pro-cessed by different spectral pretreatment methods.Finally,PLS and SVM are utilized to establish prediction models for NIR data respectively.The predicted results are analyzed and compared and the results show that the NIR analysis method using S-G smoothing pretreatment and PLS modeling has a better detection results.The decision coefficient R2 of the Al203 detection model is 0.895,and the RMSEP is 0.072;the decision coefficient R2 of the Fe2O3 detection model is 0.732,and the RMSEP is 0.023.The research results provide an effective analytical method for detecting the composition of cement raw materials,promoting the further development of the cement industry.

near infrared spectroscopycement raw materialcomponent detectionspectral pretreatmentprediction model

王译那、郭迎庆、王一帆、肖航、赵志、张雷

展开 >

南京林业大学,江苏南京 210037

山东师范大学,山东济南 250358

山东大学,山东济南 250061

近红外光谱 水泥生料 成分检测 光谱预处理 预测模型

江苏省双创博士项目2023年度江苏省高等学校基础科学(自然科学)研究面上项目山东省自然科学基金青年基金

JSSCBS2022069823KJB130007ZR2021QF135

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(4)
  • 14