首页|基于机器学习的K424合金刻蚀深度预测

基于机器学习的K424合金刻蚀深度预测

扫码查看
为探究水导激光加工过程中不同工艺参数对K424高温合金刻蚀深度的作用,对K424高温合金进行了包括激光功率、进给速度及加工次数在内的三个关键工艺参数的影响刻蚀实验,实验结果表明:较大的功率、较小的进给速度和多次加工会产生更深的刻蚀.此外采用XGBoost、RF、BPNN以及SVR四种模型建立了激光功率、进给速度和加工次数与加工深度之间的预测模型.在拟合效果上XGBoost与SVR模型表现优异,最大误差百分比均不到0.3%;在预测结果方面显示,XGBoost最大误差百分比6.698%,优于另三种模型.最后得出XGBoost模型在拟合和预测K424高温合金加工深度方面有更好的性能.与传统的干式激光加工相比,水导激光加工技术减少了材料热损伤,提高了加工质量.该研究为水导激光加工K424高温合金提供了参考.
Depth prediction of K424 alloy etching based on machine learning
In order to research the influence of process parameters on the etching depth of K424 high temperature alloy during water-jet guided laser(WJGL)processing,etching experiments on K424 high-temperature alloy are carried out on the influence of three key process parameters including laser power,feed rate and number of times of processing.The experimental results show that higher power,smaller feed rate and multiple times of machining produce deeper etching.In addition,the prediction model between laser power,feed rate and number of times of machining and depth of machining is established by using four models,XGBoost,RF,BPNN and SVR.The XGBoost and SVR models out-perform in terms of fitting effect,with the maximum percentage of error being less than 0.3%;in terms of prediction results,it shows that XGBoost has a maximum percentage of error percentage of 6.698%,which is better than the oth-er three models.Finally,it is concluded that XGBoost model has better performance in fitting and predicting the depth of machining of K424 high temperature alloy.The water-jet guided laser processing technique reduces material thermal damage and improves processing quality compared to conventional dry laser processing.This study provides a reference for water-guided laser processing of K424 high-temperature alloy.

water-jet guided laser processing technologyK424 high-temperature alloyXGBoostetching depth predic-tion

张青、乔红超、王顺山、赵吉宾

展开 >

中国科学院沈阳自动化研究所,辽宁沈阳 110016

中国科学院机器人与智能制造创新研究院,辽宁沈阳 110169

中国科学院大学,北京 100049

水导激光加工技术 K424高温合金 XGBoost 刻蚀深度预测

国家重点研发计划

2022YFB4601600

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(5)
  • 21