首页|基于多模复合探测方法的无人艇目标识别研究

基于多模复合探测方法的无人艇目标识别研究

扫码查看
随着水面无人艇技术的不断发展和应用,其对于舰船的威胁程度也日益加剧.以末敏弹打击水面无人艇为背景,为了提升多元激光/红外/毫米波探测器对水面小型目标的识别性能,提出 了 一 种基于多通道卷积神经网络(Multi-Channel Convolutional Neural Network,MCC-NN)和极端梯度提升决策树(Extreme Gradient Boosting,XGBoost)的复合探测信号识别方法MCCNN-XGB,同时构建了单通道CNN识别网络与基于人工特征提取的XGBoost识别算法作为对照,最终通过水面目标无人机载探测试验数据对上述三种模型的 目标识别性能进行评估与对比.测试结果表明,基于MCCNN-XGB的识别算法表现最佳,测试准确率达到了 97.26%.本文所提出的识别方法能够有效进行复合探测信号的特征提取,并且能够降低误识别率与漏识别率,具有较好的识别效果.
Study on target recognition of USV based on multi-mode composite detection method
With the continuous development and application of USV technology,its threat to ships is increasing.In or-der to improve the recognition performance of multi-component laser/infrared/millimeter wave detector on small sur-face targets,a composite detection signal recognition method MCCNN-XGB based on multi-channel convolutional neu-ral network(Multi-Channel Convolutional Neural Network,MCCNN)and extreme gradient lifting decision tree(Ex-treme Gradient Boosting,XGBoost)is proposed.At the same time,a single channel CNN recognition network and XG-Boost recognition algorithm based on artificial feature extraction are constructed as a comparison.Then,the target rec-ognition performance of the above three models is evaluated and compared through the test data of UAV mount USV target.The test results show that the recognition algorithm based on MCCNN-XGB performs the best,with a test accu-racy of 97.26%.The recognition method proposed in this paper can effectively extract the features of the complex de-tection signal,and can reduce the false recognition rate and missing recognition rate,which has a good recognition effect.

terminal sensitive projectileUSVmultiple detectionobject identificationCNNmachine learning

周昇辉、武军安、郭锐

展开 >

南京理工大学智能弹药技术国防重点学科实验室,江苏南京 210094

末敏弹 水面无人艇 复合探测 目标识别 卷积神经网络 机器学习

面向成像式灵巧弹药的DCNN轻量化研究项目高动态导航技术北京市重点实验室开放基金任务书项目

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(5)
  • 13