首页|基于改进YOLOv5的路面坑洼检测算法研究

基于改进YOLOv5的路面坑洼检测算法研究

扫码查看
路面坑洼作为路面结构的重要缺陷之一,对于保障自动驾驶车辆的行驶安全或移动机器人运行具有重大意义.在处理路面坑洼检测时,面临着挑战性的计算机视觉任务,要求在不同的工况下对多样化的数据样本进行处理.诸如雾、雨、雪等天气因素会对道路图像的质量和可见性产生负面影响,进而增加了数据预处理和特征提取的难度.传统的目标检测算法通常难以有效适应这些场景变化,导致训练数据集无法充分反映道路坑洼的多样性和复杂性,从而降低了目标检测模型的泛化能力和准确性.在实际应用中,这些方法容易导致漏检和误检的错误,对道路状况识别和评估的效率和质量造成影响.本文提出了一种基于YOLOv5的改进的路面坑洼检测算法,通过引入一个概念简单、功能强大但非常新颖的注意力机制(BiFPN),并替换适合的激活函数与损失函数,提升了模型的检测精度以及查全率,同时降低计算参数,简化检测模型.经实验验证,本文改进的算法与原模型相比准确率(Precision)提升了 7.2%,召回率(Recall)提高了 5.5%,平均准确率(mAP)达到了 80.8%,较原YOLOv5s模型提升了2.1%.综上,与常用的一类传统算法相比,本文的改进算法能在几乎不牺牲运行速度的情况下较为明显地提高检测精度,降低漏检率,且不影响检测时的帧率,具有较好的移动端部署价值与对相应研究的参考价值.
Research on pavement pothole detection algorithm based on improved YOLOv5
As one of the important defects of pavement structure,pavement potholes are of great significance for ensu-ring the driving safety of autonomous vehicles or the operation of mobile robots.When dealing with pavement pothole detection,challenging computer vision tasks are faced,requiring diverse data samples to be processed under different working conditions.Weather factors such as fog,rain,and snow can negative affect the quality and visibility of road im-ages,which in turn increases the difficulty of data preprocessing and feature extraction.Traditional target detection al-gorithms are usually difficult to effectively adapt to these scenario variations,resulting in training datasets that do not adequately reflect the diversity and complexity of road potholes,which reduces the generalization ability and accuracy of the target detection model.In practical applications,these methods are prone to lead to omission and misdetection errors,which have an impact on efficiency and quality of road condition identification and evaluation.In this paper,an improved pavement pothole detection algorithm based on YOLOv5 is proposed,which improves the detection accuracy as well as the recall rate of the model.By introducing a simple,powerful but very novel attention mechanism(BiFPN)and replacing the appropriate activation function and loss function,while the calculation parameters are reduced and the detection model is simplified.The experimental results show that the improved algorithm in this paper improves the accuracy(Precision)by 7.2%compared with the original model,the recall rate(Recall)by 5.5%,and the average accuracy(mAP)by 80.8%,which is 2.1%higher than the original YOLOv5 model.In summary,compared with the commonly used traditional algorithms,the improved algorithm in this paper can significantly improve the detection ac-curacy and reduce the missed detection rate without sacrificing the running speed,which has a better value for mobile deployment and reference value for corresponding research.

YOLOv5image recognitionpotholecomputer vision

王哲兴、李军、谭倩

展开 >

重庆交通大学机电与车辆工程学院,重庆 400074

重庆交通大学交通运输学院,重庆 400074

YOLOv5 图像识别 坑洼 计算机视觉

国家自然科学基金重庆市研究生联合培养基地项目

51305472JDLHPYJD2018003

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(5)
  • 19