首页|基于改进YOLOv5的潜艇目标检测算法

基于改进YOLOv5的潜艇目标检测算法

扫码查看
为了解决传统潜艇目标检测缺乏对复杂背景和噪声的鲁棒性、对光照变化和视角变化敏感、难以处理大规模数据集等问题,提出了一种基于改进YOLOv5潜艇目标检测器.通过C3_Transformer结构,有效提升了特征的全局上下文建模能力和长距离依赖性捕捉能力;通过simOTA解决anchorbased算法中正负样本不平衡问题,增强模型对小目标和困难样本的学习能力;利用decoupledhead的思想解决分类和位置预测任务的互斥性问题,提高检测精度和鲁棒性.实验结果表明:相较于原始YOLOv5,改进后的模型Precision、Recall、mAP0.5、mAP 0.5∶0.95分别提高了 2.8%、10.9%、3.8%、14.7%,这表明改进后的模型在潜艇目标检测的准确性、召回率以及在不同置信度阈值下的平均准确率等方面取得了明显的进步,同时在实际检测任务中改进后的模型有效解决了"漏检"、"误检"的问题.
Submarine target detection algorithm based on improved YOLOv5
In this paper,an improved YOLOv5-based submarine target detector is proposed to solve the problems that traditional submarine target detection lacks robustness to complex backgrounds and noises,is sensitive to changes in illumination and viewing angle,and is difficult to deal with large-scale datasets.With the C3_Transformer structure,the global context modeling ability of the features and the long-range dependency capturing ability are effectively im-proved.And the simOTA algorithm is employed to address the issue of imbalanced positive and negative samples in anchor-based algorithms,thereby enhancing the model's learning capabilities for small targets and challenging sam-ples.Additionally,the decoupledhead approach is utilized to overcome the mutual exclusivity problem between classifi-cation and position prediction tasks,resulting in improved detection accuracy and robustness.The experimental results show that compared to the original YOLOv5,the improved model shows significant advancements in terms of Preci-sion,Recall,mAP@0.5,and mAP@0.5∶0.95,with improvements of 2.8%,10.9%,3.8%,and 14.7%respec-tively,which indicates that the improved model achieves notable progress in terms of accuracy,recall rate,and average precision at different confidence thresholds in submarine target detection.Furthermore,the improved model effectively addresses the issues of"missed detection"and"false detection"in the actual detection task.

contextsample imbalancemutual exclusionoptimal transmission problem

梅礼坤、陈智利

展开 >

西安工业大学光电工程学院,陕西西安 710021

上下文 样本不平衡 互斥性 最优传输问题

陕西省科技厅基金项目

2023-YBGY-369

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(6)