首页|基于AGF和CNN的红外与可见光图像融合

基于AGF和CNN的红外与可见光图像融合

扫码查看
针对红外与可见光图像融合中出现的边缘模糊和细节丢失等问题,本文提出了 一种基于交替引导滤波器(AGF)与掩膜引导卷积神经网络(CNN)的融合算法.首先,将源图像通过交替引导滤波分解为基础层与细节层;然后,将基础层通过能量属性的融合规则得到基础融合图像,细节层在基于掩膜引导的损失函数的指导下,通过卷积神经网络得到融合后的细节图像;最后,将基础融合图像与细节融合图像相加得到最终融合图像;实验结果表明,本文方法能够在突出显著热目标的同时保留丰富的背景边缘纹理信息,在客观评价指标上相较对比方法取得了更好的效果,证明了本文算法的优越性.
Infrared and visible image fusion based on AGF and CNN
Aiming at the problems of edge blurring and detail loss in the fusion of infrared and visible image,this pa-per proposes a fusion algorithm based on alternating guided filter(AGF)and mask-guided convolutional neural net-work(CNN).Firstly,the source images is decomposed into a base layer and a detail layer by alternating guided filte-ring.Then,the base layer is passed through the fusion rule with energy attributes to get the base fusion image,and the detail layer is guided by the loss function based on the mask guidance to get the fused detail image by convolutional neural network.Finally,the base fusion image and the detail fusion image are summed to generate the final fused im-age.The experimental results demonstrate that the proposed method effectively retains abundant background edge tex-ture information while highlighting significant thermal targets,and achieves better results in objective evaluation met-rics compared with the comparison methods,which proves the superiority of the proposed algorithm.

image processinginfrared and visible imagealternating guided filterconvolutional neural networkimage fusion

杨艳春、杨万轩、雷慧云

展开 >

兰州交通大学电子与信息工程学院,甘肃兰州 730070

图像处理 红外与可见光图像 交替引导滤波 卷积神经网络 图像融合

长江学者和创新团队发展计划资助项目国家自然科学基金项目甘肃省科技计划项目甘肃省高等学校产业支撑计划项目兰州市科技计划项目甘肃省教育厅青年博士基金项目甘肃省自然科学基金项目甘肃省自然科学基金项目兰州交通大学天佑创新团队项目兰州交通大学—天津大学联合创新基金项目

IRT_16R366206700618JR3RA1042020C-192019-4-492022QB-06723JRRA84721JR7RA300TY2020032021052

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(7)
  • 4