首页|基于图神经网络和注意力机制的点云分类模型

基于图神经网络和注意力机制的点云分类模型

扫码查看
为了增强基于深度学习的三维点云分类模型对全局特征的建模能力,提高模型的泛化性能,在PointNet的基础上,提出了基于图神经网络和注意力机制融合的点云分类模型.首先,将提取的特征分别通过增加通道注意力模块和空间注意力模块,使模型更加关注全局上下文信息,抑制噪声信息,减少冗余参数,增强对全局特征的建模能力;其次,通过在多尺度球半径内进行不同K值最近邻搜索对编码的输入特征进行构图,既减小了图的规模,降低训练开销,又使模型学习不同层级的特征表示;最后,通过图卷积神经网络汇聚邻域信息,更新节点特征,并将不同图卷积神经网络层输出特征进行相加,融合多层级特征,提高分类准确率.本文在公用数据集ModelNet40上进行训练与测试,其总体分类准确为88.6%,优于通用的3 DShapeNets、VoxNet、ECC、PointNet模型,证明了模型在点云分类上的优越性.
Point cloud classification model based on graph neural network and attention mechanism
In order to enhance the modeling capability of global features in deep learning-based 3D point cloud classi-fication models and improve their generalization performance,a point cloud classification model based on the fusion of graph neural network and attention mechanism is proposed on the basis of PointNet.Firstly,the extracted features are used to make the model pay more attention to the global context information,suppress the noise information,reduce the redundant parameters,and enhance the modelling ability of the global features by increasing the channel attention module and the spatial attention module,respectively.Secondly,different K-values nearest neighbor searches are per-formed within multiple scales of sphere radius to construct the input features for encoding,which not only reduces the scale of the graph and training overhead but also enables the model to learn features at different levels.Finally,neigh-borhood information is aggregated and node features are updated through graph convolutional neural networks.The out-put features of different graph convolutional neural network layers are summed up to fuse multi-level features and im-prove classification accuracy.The proposed model is trained and tested on the public dataset ModelNet40,achieving an overall classification accuracy of 88.6%,which outperforms the commonly used 3DShapeNets,VoxNet,ECC,and PointNet models,demonstrating its superiority in point cloud classification.

3D point cloudattention mechanismgraph neural networkmulti-scale feature fusion

徐海涛、郝晓萍、晁欣、董少锋、李祥

展开 >

中国科学院沈阳自动化研究所,辽宁沈阳 110016

中国科学院机器人与智能制造创新研究院,辽宁沈阳 110169

中国科学院大学,北京 100049

辽宁省智能检测与装备技术重点实验室,辽宁沈阳 110179

中国航发动力股份有限公司,陕西西安 710021

展开 >

三维点云 注意力机制 图神经网络 多尺度特征融合

辽宁省应用基础研究计划项目辽宁省应用基础研究计划项目

2022JH2/1013002032023JH2/101300148

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(8)