首页|基于RPCA-FFT的复合材料冲击损伤缺陷成像

基于RPCA-FFT的复合材料冲击损伤缺陷成像

扫码查看
针对传统锁相热成像缺陷特征提取算法存在对比度较低和小缺陷易丢失问题,提出了基于鲁棒主成分分析(RPCA)与FFT相结合的缺陷检测算法,并用非精确增广拉格朗日乘子法(IALM)求解RPCA模型.将原始红外热波序列向量化为二维矩阵,通过RPCA将数据分解成两部分:近似提取非均匀背景的低秩矩阵,反映缺陷信息的稀疏矩阵,对得到的稀疏矩阵使用FFT求得去除非均匀背景的幅度与相位图,针对求解RPCA模型时IALM需人为引入初始值,影响优化结果等问题,使用暴龙优化算法(TROA),选取信杂比增益和背景抑制因子构建适应度函数,对初始平衡参数和惩罚因子进行优化.实验结果表明,该算法所得图像对比突出、小缺陷信息明显,客观评价指标优于其他算法,其中熵值有了大幅度的减小,有效抑制热波图像非均匀背景.
RPCA-FFT based imaging of impact damage defects in composite materials
Aiming at the problems of low contrast and easy loss of small defects in the traditional phase-locked thermal imaging defect feature extraction algorithm,a defect detection algorithm based on the combination of robust principal component analysis(RPC A)and FFT is proposed,and the RPC A model is solved by the inexact augmented Lagrange multiplier method(IALM).The original infrared thermal wave sequence vector is transformed into a two-dimensional matrix,and the data is decomposed into two parts by RPC A.The low-rank matrix that approximates the extraction of the non-uniform background,and the sparse matrix that reflects the defective information,and the magnitude and phase maps of the non-uniform background are obtained by using the FFT on the obtained sparse matrix,which is aimed at the problem that IALM needs to artificially introduce the initial value to solve the RPC A model,which affects the opti-mization results.Tyrannosaurus optimization algorithm(TROA)is used to construct the fitness function by selecting the signal-to-heterodyne gain and the background suppression factor,and to optimize the initial equilibrium parameters and the penalty factor.The experimental results show that the image obtained by this algorithm has outstanding con-trast,obvious information of small defects,and better objective evaluation indexes than other algorithms,in which the entropy value has been greatly reduced,effectively suppressing the non-uniform background of the heat wave image.

phase-locked thermographyinfrared image sequencesrobust principal component analysisTyrannosau-rus optimization algorithmdefect detection

叶振宇、吴伟

展开 >

南昌航空大学,江西南昌 330063

锁相热成像 红外图像序列 鲁棒主成分分析 暴龙优化算法 缺陷检测

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(8)