首页|基于改进CenterNet的红外小目标检测研究

基于改进CenterNet的红外小目标检测研究

扫码查看
随着机器学习技术的不断发展,对目标检测技术的研究也越来越火热.针对目标检测中精度低、实时性差的问题.本文采用了 一种单阶段的目标检测算法CenterNet完成对目标的快速识别,在算法的主干网络ResNet50增加CBAM注意力机制,提升了网络对目标的识别精度;在网络的输出模块,采用一种新的GSConv卷积模块,在不损失精度的情况下提高了检测速度.改进后的算法在红外数据集上验证其检测的准确性,其检测准确率达到82.91%.研究结果表明:改进的CenterNet算法,可准确高效的完成对红外小目标的识别.
Research on infrared small target detection based on improved CenterNet
With the continuous development of machine learning technology,the research on object detection technolo-gy is becoming increasingly popular.To address the issues of low accuracy and poor real-time performance in target detection,a single stage object detection algorithm CenterNet is adopted to achieve rapid recognition of targets.A CBAM attention mechanism is added to resnet50,the backbone network of the algorithm,to improve the recognition accuracy of the network on the target.In the output module of the network,a new GSConv convolution module is used to improve the detection speed without loss of accuracy.The improved algorithm is validated on the infrared dataset-and its detection accuracy reaches 82.91%.The results show that that the improved CenterNet algorithm can accu-rately and efficiently accomplish the recognition of small infrared targets.

infrared target detectionCenterNetattention mechanismGSConv

倪安庆、李军、王耀弘

展开 >

重庆交通大学机电与车辆工程学院,重庆 400074

重庆市计量质量检测研究院,重庆 401121

红外目标检测 CenterNet 注意力机制 GSConv

国家自然科学基金项目重庆市研究生联合培养基地项目

52172381JDLHPYJD2018003

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(9)