首页|基于改进LCCP的堆叠目标点云分割算法

基于改进LCCP的堆叠目标点云分割算法

Stacked target point cloud segmentation algorithm based on improved LCCP

扫码查看
点云分割作为无序分拣任务中的一个重要处理步骤,其分割精度直接影响后续的目标识别与姿态估计准确率.针对传统LCCP算法在物体复杂堆叠场景下分割效果不佳的问题,本文提出了一种基于改进LCCP的点云分割算法,首先使用改进的VCCS算法将点云划分为超体素,通过融入高斯曲率信息,进一步改善超体素容易跨越物体边界的问题,然后判定邻接超体素的凹凸连接关系,为了进一步减小噪声的影响,对于所有体积小于给定阈值的超体素,判定其与所有邻接超体素间的连接关系,合并所有凸连接的超体素,得到最终分割结果.实验结果表明,本文方法相比于LCCP和CPC算法在分割精确率上提升了 3.1%~22%,且算法整体性能有明显提升.
As an essential processing step in unordered picking tasks,point cloud segmentation directly impacts the subsequent accuracy of object recognition and pose estimation.To address the problem of inadequate segmentation per-formance of the traditional LCCP algorithm in complex object stacking scenarios,an improved LCCP point cloud seg-mentation algorithm that incorporates Gaussian curvature information is proposed in this paper.Initially,an enhanced VCCS algorithm is employed to partition the point cloud into super-voxel,and by integrating Gaussian curvature infor-mation,the issue of super-voxel easily crossing object boundaries is further addressed.Subsequently,concave-convex connectivity among adjacent super-voxel blocks is determined,followed by the merging of all convexly connected su-per-voxel to form the final segmentation results.The experimental results demonstrate that the method improves seg-mentation precision by 3.1%to 22%compared to LCCP and CPC,with a noticeable enhancement in overall algo-rithm performance.

point cloud segmentationGaussian curvaturesuper-voxelconcave-convex connectivity

高显棕、金建辉

展开 >

昆明理工大学信息工程与自动化学院,云南 昆明 650500

点云分割 高斯曲率 超体素 凹凸连接

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(11)