首页|基于改进LCCP的堆叠目标点云分割算法

基于改进LCCP的堆叠目标点云分割算法

扫码查看
点云分割作为无序分拣任务中的一个重要处理步骤,其分割精度直接影响后续的目标识别与姿态估计准确率.针对传统LCCP算法在物体复杂堆叠场景下分割效果不佳的问题,本文提出了一种基于改进LCCP的点云分割算法,首先使用改进的VCCS算法将点云划分为超体素,通过融入高斯曲率信息,进一步改善超体素容易跨越物体边界的问题,然后判定邻接超体素的凹凸连接关系,为了进一步减小噪声的影响,对于所有体积小于给定阈值的超体素,判定其与所有邻接超体素间的连接关系,合并所有凸连接的超体素,得到最终分割结果.实验结果表明,本文方法相比于LCCP和CPC算法在分割精确率上提升了 3.1%~22%,且算法整体性能有明显提升.
Stacked target point cloud segmentation algorithm based on improved LCCP
As an essential processing step in unordered picking tasks,point cloud segmentation directly impacts the subsequent accuracy of object recognition and pose estimation.To address the problem of inadequate segmentation per-formance of the traditional LCCP algorithm in complex object stacking scenarios,an improved LCCP point cloud seg-mentation algorithm that incorporates Gaussian curvature information is proposed in this paper.Initially,an enhanced VCCS algorithm is employed to partition the point cloud into super-voxel,and by integrating Gaussian curvature infor-mation,the issue of super-voxel easily crossing object boundaries is further addressed.Subsequently,concave-convex connectivity among adjacent super-voxel blocks is determined,followed by the merging of all convexly connected su-per-voxel to form the final segmentation results.The experimental results demonstrate that the method improves seg-mentation precision by 3.1%to 22%compared to LCCP and CPC,with a noticeable enhancement in overall algo-rithm performance.

point cloud segmentationGaussian curvaturesuper-voxelconcave-convex connectivity

高显棕、金建辉

展开 >

昆明理工大学信息工程与自动化学院,云南 昆明 650500

点云分割 高斯曲率 超体素 凹凸连接

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(11)