首页|基于改进CenSurE-star的图像匹配算法

基于改进CenSurE-star的图像匹配算法

扫码查看
针对传统局部特征匹配算法在复杂场景中匹配精度低、实时性差的问题,提出一种基于CenSurE-star融合边缘化外点的图像匹配方法.首先对模板图像和待匹配图像进行快速引导滤波预处理;随后提出一种自适应阈值的CenSurE-star算法进行特征检测;其次,本文首次将 BEBELID(Boosted efficient binary local image descriptor)描述符和改进的 CenSurE-star 算法相结合,利用基于机器学习的分类方法得到高效的二值描述符;最后引入MAGSAC++(Mar-ginalizing Sample Consensus)算法边缘化外点得到空间几何变换关系,剔除初步匹配中存在的误匹配,提高匹配精度.通过标准牛津数据集实验对比,相较于BRISK、ORB、AKAZE、传统CenSurE-star算法,该方法的特征点分布更均匀、误匹配点更少,在模糊、光照、视点、尺度变化方面拥有更强的鲁棒性,提高了算法在复杂场景中的匹配精度,实时性也进一步提升.
Image matching algorithm based on improved CenSurE-star
Aiming at the problems of low matching accuracy and poor real-time performance of traditional local feature matching algorithms in complex scenes,an image matching method based on CenSurE star fusion of marginalization outliers is proposed in this paper.Firstly,fast bootstrap filtering preprocessing is performedon the template image and the image to be matched.Subsequently,an adaptive threshold based on CenSurE star algorithm is proposed for feature detection.Secondly,for the first time,the BEBELID(Boosted efficient binary local image descriptor)descriptor is used in conjunction with the improved CenSurE star algorithm to obtain efficient binary descriptors using machine learning based classification methods.Finally,MAGSAC++(Marginalizing Sample Consensus)algorithm is introduced to mar-ginalize outliers and obtain spatial geometric transformation relationships,eliminating errors in preliminary matching and improving matching accuracy.Through the experimental comparison of the standard Oxford dataset,compared with the BRISK,ORB,AKAZE,and the traditional CenSurE-star algorithms,this method has a more uniform distribution of feature points,fewer mismatched points,and possesses stronger robustness in terms of blurring,illumination,point-of-view,and scale variations,which improves the matching accuracy of the algorithm in complex scenes and further en-hances the real-time performance.

image matchingfast guided filteringCenSurE-starBEBELIDMAGSAC++

谷学静、楚一凡、肖军发、周记帆

展开 >

华北理工大学电气工程学院,河北唐山 063210

唐山市数字媒体工程技术研究中心,河北唐山 063000

图像匹配 快速引导滤波 CenSurE-star特征 BEBELID描述符 边缘化外点

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(11)