首页|改进Crust算法的点云复杂曲面精细化三维重建

改进Crust算法的点云复杂曲面精细化三维重建

扫码查看
针对基于Delaunay三角剖分的Crust算法在对激光点云和影像点云进行复杂曲面三维重建时模型表面不够光滑、耗时长、精度不高的问题,该文提出一种改进的点云三维重建方法.该方法首先用体素重心临近特征点算法进行下采样;之后使用移动最小二乘算法拟合函数并确定二次基函数和高斯权函数完成数据平滑与优化;然后使用基于自适应外接圆Delau-nay 三角剖分方法的Crust算法进行重建,得到粗三角网格;最后采用四面体的外接球半径与其最短边长比值剔除不合格的四面体,完成对模型的优化与重建.经过实验验证,该方法可以减少孔洞和重建时间,构建出平滑、点云点云拓扑结构更为准确的三维模型.
Refined 3D reconstruction of point cloud complex surface with improved Crust algorithm
Aiming at the problems that the Crust algorithm based on Delaunay triangulation is not smooth enough,time-con-suming,and has low accuracy when reconstructing complex surfaces from laser and image point clouds,an improved 3D point cloud reconstruction method is proposed.Firstly,the voxel barycentric near feature point algorithm is used for down-sampling.After that,the moving least squares algorithm is used to fit the function and determine the quadratic basis function and Gaussian weight function to complete the data smoothing and optimization.Then,the Crust algorithm based on the adap-tive extrinsic circle Delaunay triangulation method is used to reconstruct the coarse triangular mesh.Finally,the ratio of the outer radius of the tetrahedron to the shortest side length of the tetrahedron is used to eliminate the unqualified tetrahedron and complete the reconstruction and optimization of the model.The experimental results show that this method can reduce the time of holes and reconstruction,and build a smooth 3D model with more accurate topology of point cloud.

3D reconstructionlaser point cloudimage point cloudDelaunay triangulationCrust algorithm

张前、王健、齐智宇、王政辉

展开 >

山东科技大学测绘与空间信息学院,山东青岛 266590

三维重建 激光点云 影像点云 Delaunay三角剖分 Crust算法

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)