首页|面向铁路场景的大规模点云语义分割方法研究

面向铁路场景的大规模点云语义分割方法研究

扫码查看
随着高速铁路和城市轨道交通系统的快速发展,对交通安全技术的研究日益迫切.应用激光扫描技术生成的铁路线路环境三维点云,能够对运行环境实现准确的感知.本文以铁路场景的三维点云数据为研究对象,首次构建了铁路场景下的大规模点云语义分割数据集.针对现有点云语义分割模型主要适用于于小尺度场景,但是铁路线路环境的三维点云数据规模很大,为此,本文提出了一种面向铁路场景的大规模点云语义分割方法,在编码阶段提出了一种基于自注意力的自适应局部特征融合模块,可以更好地聚合不同尺度的局部特征,解决类别不均衡的问题;在解码阶段提出了一种高维语义信息引导下的上采样方法,弥补了在编码阶段较大尺度的下采样造成的信息损失.所提方法在铁路场景数据集及公共室内数据集上都取得了优异的分割性能.
Large-scale point cloud semantic segmentation method for railway scene
With the rapid development of high-speed railway and urban rail transit systems,research on traffic safety technology is becoming increasingly urgent.The 3D point cloud of railway line environment generated by applying laser scanning technology can achieve accurate perception and monitoring of operating environments.In this paper,the three-dimensional point cloud data of railway scenes is taken as the research object,and a large-scale point cloud semantic segmentation dataset for railway scenes is constructed for the first time.The existing point cloud semantic segmentation models are mainly applicable to small-scale scenes,and large scenic point clouds need to be segmented first.However,three-dimensional point cloud data of railway line environments have the characteristics of high data acquisition frequen-cy and large data scale.Therefore,a large-scale point cloud semantic segmentation method for semantic perception of railway scenes is proposed in this paper.During the coding stage,an adaptive local feature fusion module based on self-attention is proposed in the encoding stage,which can better aggregate local features of different scales and solve the problem of category imbalance.In the decoding stage,an up-sampling method guided by high-dimensional semantic in-formation is proposed to compensate for the information loss caused by large-scale down-sampling in the coding stage.The proposed method achieves excellent segmentation performance on both railway scene datasets and public in-door datasets.

laser point cloudpoint cloud segmentationdeep learningrailway scene

孟维傑、吴嘉诚、孙淑杰、刘俊博、郭剑勇、田媚、黄雅平

展开 >

交通数据分析与挖掘北京市重点实验室,北京交通大学,北京 100044

北京交通大学计算机与信息技术学院,北京 100044

联通数字科技有限公司,北京 100032

中国铁道科学研究院基础设施检测所,北京 100080

中国铁路设计集团有限公司城市轨道交通事业部,天津 300142

城市轨道交通数字化建设与测评技术国家工程研究中心,天津 300308

北京交通大学唐山研究院,河北唐山 063000

展开 >

激光点云 点云分割 深度学习 铁路场景

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)