首页|激光切割机器人视觉图像目标标注研究

激光切割机器人视觉图像目标标注研究

扫码查看
在激光切割的工业环境下会存在大量干扰元素,例如电磁干扰、振动、烟尘和颗粒物、外部环境以及光源等,当前的结合类别学习方法,对目标抽象图形中凸显区域缺少单独目标对齐过程,导致目标特征关联性不强,标注结果不准.提出基于改进YOLOv5s的激光切割机器人视觉图像目标标注方法.利用输入端、池化层、共享全连接层等搭建改进YOLOv5s模型,该网络使用最大池化与平均池化生成两幅激光切割机器人视觉图像,根据通道维度连接图像特征实现激光视觉图像目标粗定位,结合调制因子和目标检测损失实现目标特征对齐.在目标特征对齐后确定激光切割机器人视觉图像关键凸显区域帧,通过对激光切割机器人历史标注图像实施半监督训练,确定图像空间区域关联,根据区域关联进行激光视觉图像目标标注.实验结果表明:所提方法的激光切割机器人视觉图像目标标注的交并比与准确率高、速度快,拥有极强的鲁棒性.
Research on visual image object annotation of laser cutting robot
In the industrial environment of laser cutting,there are a large number of complex backgrounds and other interfering elements such as equipment.The current combination of category learning methods lacks a separate target alignment process for the highlighted areas in the abstract target graphics,resulting in weak correlation between target features and inaccurate annotation results.Propose a visual image object annotation method for laser cutting robots based on improved YOLOv5s.By utilizing input terminals,pooling layers,and shared fully connected layers,an im-proved YOLOv5s model is built.This network uses max pooling and average pooling to generate two laser cutting robot visual images.Based on the channel dimension,the image features are connected to achieve rough target localization in the laser visual image,and target feature alignment is achieved by combining modulation factors and target detection losses.After aligning the target features,the key highlighted area frames of the laser cutting robot's visual image are determined.By implementing semi supervised training on the historical annotated images of the laser cutting robot,the spatial region associations of the images are determined,and laser visual image target annotation is performed based on the region associations.The experimental results show that the proposed method for laser cutting robot visual image target annotation has high intersection to union ratio,high accuracy,fast speed,and strong robustness.

improve YOLOv5slaser cutting robotvisual imagestarget annotationtarget location

熊艳飞、刘登邦

展开 >

江西应用科技学院智能制造工程学院,江西南昌 330100

改进YOLOv5s 激光切割机器人 视觉图像 目标标注 目标定位

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)