首页|红外光谱发射率测量设备检定状态预测研究

红外光谱发射率测量设备检定状态预测研究

扫码查看
使用光谱发射率测量设备检测红外隐身涂层发射率,是监控飞机红外隐身涂层状态的一种重要手段.在测量设备检定周期内,受使用环境、使用频率、使用方法等因素影响,偶发设备状态变得恶劣,测量值偏离参考值,对及时发现红外隐身涂层缺陷带来一定风险,可能影响飞机整体红外隐身特性.针对检定周期内出现的测量值偏差问题,建立格拉姆角场(GAF)-并行卷积神经网络(PCNN)设备检定状态预测模型.将测量设备一维时序数据送入GAF-PC-NN模型中,经过深度学习,训练出红外发射率测量设备检定状态预测模型.试验表明,该检定状态预测模型平均识别准确率达到95%,且收敛速度快且稳定,可应用于设备检定状态预测,提示提前检定或者超检定周期使用,在确保设备状态良好的同时,减少设备检定活动,提高保障效率.
Research on predicting the calibration status of infrared spectral emissivity measurement equipment
Using spectral emissivity measurement equipment to detect the emissivity of infrared stealth coatings is an impor-tant means of monitoring the status of aircraft infrared stealth coatings.During the calibration cycle of the measuring equip-ment,due to factors such as usage environment,usage frequency,usage method and so on,the condition of the equipment occasionally becomes worse,and the measured values deviate from the reference value which poses a certain risk for timely detection of infrared stealth coating defects and may affect the overall infrared stealth characteristics of the aircraft.To ad-dress the issue of measurement deviation during the calibration cycle,a Gramian Angular Field(GAF)and Parallel Convo-lutional Neural Network(PCNN)calibration status prediction model is established.By collecting one-dimensional time-se-ries data from the device and feeding it into the GAF-PCNN mode,a prediction model for the calibration status of infrared emissivity measurement equipment is trained through deep learning.The experiment shows that the average recognition ac-curacy of the calibration state prediction model reaches 95%,and the convergence speed is fast and stable,which can be applied to equipment calibration state prediction,prompting early calibration or use beyond the calibration cycle.While en-suring good equipment condition,it reduces equipment calibration activities and improves guarantee efficiency.

Gramian Angular Field(GAF)Parallel Convolutional Neural Network(PCNN)infrared emissivitypredictioncalibration status

郭娟、张金铭、季新杰

展开 >

空军工程大学航空机务士官学校,河南信阳,464000

格拉姆角场 并行卷积神经网络 红外发射率 预测 检定状态

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)