首页|基于改进YOLOv8的红外无人机目标检测算法

基于改进YOLOv8的红外无人机目标检测算法

扫码查看
针对红外无人机目标识别过程中特征丢失严重、识别准确率低及模型较为复杂的问题,提出一种改进YOLOv8的红外无人机目标检测算法.首先,在主干网络引入可变形卷积,增强目标区域的特征表达能力.其次,提出了一种针对小目标的轻量级特征金字塔网络结构SOD-FPN,通过减轻网络层数和删除大型目标检测头来避免小目标信息丢失,还通过跨尺度连接和加权特征融合方法来增强模型多尺度特征融合能力.最后,选择基于Wasserstein距离的NWDLoss作为边界框损失函数,进一步提升模型的收敛性和检测精度.实验结果表明:改进算法的mAP50为99.4%,较YOLOv8n提升了 2.2%,参数量降低了 72.8%,同时相较于其他先进的目标检测算法在精度和速度上均有提升,证明了改进算法的有效性和先进性.
Infrared UAV target detection algorithm based on improved YOLOv8
In order to solve the problems of serious feature loss,low accuracy and complex model in the process of in-frared UAV target recognition,an improved infrared UAV target detection algorithm based on YOLOv8 is proposed.Firstly,deformable convolution is introduced into the backbone network to enhance the feature representation capability of the target region.Secondly,a lightweight feature pyramid network structure SOD-FPN for small targets is proposed for small targets,which avoids the information loss of small targets by reducing the number of network layers and deleting large target detection headers.Moreover,the multi-scale feature fusion capability of the model is enhanced by cross-scale connection and weighted feature fusion method.Finally,NWD Loss based on Wasserstein distance is se-lected as the bounding box loss function to further improve the convergence and detection accuracy of the model.The experimental results show that the mAP50 of the improved algorithm is 99.4%,which is 2.2%higher than YOLOv8n,and the number of parameters is 72.8%lower.Meanwhile,compared with other advanced target detection algorithms,the accuracy and speed of the improved algorithm are improved,which proves the effectiveness and ad-vancement of the improved algorithm.

infrared imageUAV detectionsmall target detectionYOLOv8lightweight

乔庆元、程换新

展开 >

青岛科技大学自动化与电子工程学院,山东青岛 266061

红外图像 无人机检测 小目标检测 YOLOv8 轻量化

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)