首页|基于3DHarris-FPFH特征的点云配准方法

基于3DHarris-FPFH特征的点云配准方法

扫码查看
针对传统ICP算法配准时间较长,并且当两片点云初始位姿相差较大时易陷入局部最优的问题,提出了一种基于3 DHarris关键点结合快速点特征直方图(Fast Point Feature Histo-gram,FPFH)特征改进的点云配准方法.首先对输入点云使用体素下采样进行精简,再运用3 DHarris算法对精简后的两片点云提取关键点,并由FPFH形成3 DHarris-FPFH特征点,然后使用随机采样一致性(Random Sample Consensus,RANSAC)算法进行粗配准输出初始变换矩阵,最后经由改进的迭代最近点(Iterative Closest Point,ICP)算法进行精配准.将该算法在公开数据集上进行了仿真实验,结果表明该算法在保持精度的情况下,提高了运算速度,具有一定的实用性.
Point cloud registration method based on 3DHarris-FPFH features
In view of the problem that the traditional ICP algorithm has a long registration time and tends to fall into the local optimum when the initial positions of the two-point clouds differ greatly,a point cloud registration method based on the feature improvement of 3DHarris key points combined with fast point feature histogram is proposed to improve the point cloud alignment.Firstly,the input point cloud is streamlined using voxel down sampling,and then the 3DHarris al-gorithm is applied to extract key points from the streamlined two-piece point cloud,and the 3DHarris-FPFH feature points are formed by the FPFH,and then the Random Sample Consensus(RANSAC)algorithm is used to coarsely align and output the initial transformation matrix.Finally,the refined alignment is performed by the improved Iterative Closest Point(ICP)algorithm.The algorithm is simulated on open data set,and the results show that the algorithm can improve the operation speed while maintaining the accuracy,and has certain practicability.

3DHarris key pointsfast point feature histogram(FPFH)iteration closest point(ICP)point cloud registration

景会成、王睿宇、张靖轩、王一、包启龙、杨富荃

展开 >

华北理工大学电气工程学院,河北唐山 063000

河北省矿山绿色智能开采技术创新中心,河北唐山 063210

河北工业大学电气工程学院,天津 300130

3 DHarris关键点 快速点特征直方图(FPFH) 迭代最近点(ICP) 点云配准

2024

激光与红外
华北光电技术研究所

激光与红外

CSTPCD北大核心
影响因子:0.723
ISSN:1001-5078
年,卷(期):2024.54(12)