首页|低照度宽视场视频中微小目标相关滤波跟踪方法

低照度宽视场视频中微小目标相关滤波跟踪方法

扫码查看
此前的相关滤波目标跟踪算法,关于低照度宽视场小目标跟踪的研究工作未见报道。针对此,提出一种将图像差异检测框架与基于相关滤波器(CF)的跟踪框架相结合的算法,并引入双重滤波器对抗环境带来的不利因素。提出用12范数的稀疏响应正则化项来抑制CF框架产生的异常波峰。在响应阶段,根据双重滤波器加权融合,预测小目标的位置。结果表明,提出算法在低照度宽视场中对小目标的快速移动、形变、运动模糊有优异的跟踪性能,并且满足实时性能。采集了全新的具有41条由鹰眼摄像头拍摄的夜晚监控序列数据集作为基准。实验结果表明本算法在DP提升了 8。8%,AUC提升了 7。4%,并在单个CPU上实现30。6帧每秒的实时运行。
Correlation filter object tracking of tiny targets in low-Illumination wide-Field video
Prior to the correlation filter target tracking algorithm,the research work on low-illumination wide-field tiny target tracking has not been reported.In response to this,this paper proposes an algorithm that combines an image difference detection framework with a correlation filter(CF)-based tracking framework,and introduces dual fil-ters to combat the adverse factors brought by the environment.A sparse response regularization term of the 12 norm is proposed to suppress the abnormal peaks produced by the CF framework.In the response phase,the positions of small objects are predicted based on the dual filter weighted fusion.The results show that the proposed algorithm has excel-lent tracking performance for fast moving,deformation and motion blur of small targets in low illumination and wide field of view,and meets real-time performance.A new dataset of 41 night surveillance sequences captured by Eagle Eye cameras was collected as a benchmark.The experimental results show that the algorithm in this paper improves DP by 8.8%,AUC by 7.4%,and realizes real-time operation of 30.6 frames per second on a single CPU.

object trackingcorrelation filterchange detectionsparse constraint

谢钊东、贾振红

展开 >

新疆大学信息科学与工程学院信号与信息处理自治区重点实验室,乌鲁木齐 830017

目标跟踪 相关滤波 图像差异检测 稀疏约束 低照度 宽视场

国家自然科学基金联合重点项目

U1803261

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(1)
  • 2