首页|融合半波注意力机制的低光照图像增强算法研究

融合半波注意力机制的低光照图像增强算法研究

扫码查看
针对当前基于卷积神经网络的低光照图像增强算法(CycleGAN,Retinex-Net等)存在模型参数过大、内存消耗高、图像复原质量不佳等问题,在轻量级算法IAT基础上,提出了融合半波注意力模块的低光照图像增强算法HBTNet。为了改善网络频繁卷积造成的空间信息损失,在网络中引入半波注意力模块,可有效获得小波域的特性,丰富上下文信息,提高特征提取能力。通过引入MS-SSIM损失函数用来保存图像的边缘和细节信息,提升图像恢复的质量。实验结果表明,在LOL数据集上HBTNet相较于IAT算法PSNR提升了2。69%,SSIM提升了 5。56%。HBTNet算法的模型参数量仅为0。11 M,可以满足终端用户实时性要求。
Research on image enhancement algorithm of low illumination image based on half wave attention mechanism
In order to improve the low light image enhancement algorithm based on convolutional neural network(CycleGAN,Retinex-Net,etc.),which has the problems of excessive model parameters,high memory consumption and poor image recovery quality,we propose the low light image enhancement algorithm HBTNet incorporating the half-wave attention module based on the lightweight algorithm IAT.In order to improve the spatial information loss caused by frequent convolution of the network,the half-wave attention module is introduced into the network,which can ef-fectively obtain the characteristics of wavelet domain,enrich the contextual information and improve the feature extrac-tion ability.The quality of image recovery is improved by introducing MS-SSIM loss function used to preserve the edge and detail information of images.The experimental results show that HBTNet improves PSNR by 2.69%and SSIM by 5.56%compared with IAT algorithm on LOL dataset.the number of model parameters of HBTNet algorithm is only 0.11 M,which can meet the real-time requirements of end users.

image enhancementhalf wave attention mechanismcontextual informationMS-SSIM loss function

胡聪、陈绪君、吴雨锴

展开 >

华中师范大学物理科学与技术学院,武汉 430079

图像增强 半波注意力机制 上下文信息 MS-SSIM损失函数

国家自然科学基金湖北省自然科学基金

621012042020CFB474

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(1)
  • 4