首页|基于RepVGG-A0改进的公路车型识别网络

基于RepVGG-A0改进的公路车型识别网络

扫码查看
针对当前车型识别过程中检测精度与实时性难以平衡的问题,提出了一种基于RepVGG-A0改进的公路车型识别网络,利用结构重参数化思想融合多分枝网络以提升网络推理速度。使用混合空洞卷积替换传统卷积,强化了模型对大目标的识别能力。在网络主干中插入融合残差结构的坐标注意力(RES-CA)模块,提升了网络对有效特征信息的提取能力,同时避免了梯度消失与梯度退化造成的影响。此外采用了标签平滑正则化方法对损失函数进行改进,降低了模型过拟合对检测结果的影响,提升了模型的泛化性。经验证,本方法在公路车辆数据集BIT-Vehicle上的识别准确率达到了 97。17%,较原模型提升了 2。67%,优于现有的ResNet-18,VGG等网络模型,同时保证了模型的检测速度。
Improved road vehicle classification network based on RepVGG-A0
Aiming at the problem that it is difficult to balance the detection accuracy and real-time in the current vehicle type recognition process,an improved road vehicle type recognition network based on RepVGG-A0 is pro-posed,which uses the idea of structural re-parameterization to fuse the multi-branch network to improve the network reasoning speed.The mixed void convolution is used to replace the traditional convolution,which strengthens the rec-ognition ability of the model for large targets.Integrating the residual structure coordinate attention(RES-CA)module into the network backbone improves the network's ability to extract effective feature information,and avoids the impact of gradient disappearance and gradient degradation.In addition,the label smoothing regularization method is used to improve the loss function,reduce the impact of model overfitting on the detection results,and improve the generaliza-tion of the model.After verification,the recognition accuracy of the method in this paper on the road vehicle data set BIT-Vehicle has reached 97.17%,which is 2.67%higher than the original model,and is superior to the existing ResNet-18,VGG and other network models,while ensuring the detection speed of the model.

model identificationstructural re-parameterizationresidual structuremixed void convolutionla-bel smoothing regularization

任成汉、黄俊

展开 >

重庆邮电大学通信与信息工程学院,重庆 400065

车型识别 结构重参数化 残差结构 混合空洞卷积 标签平滑正则化

国家自然科学基金

61771085

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(1)
  • 7