首页|基于改进YOLOv5x的遥感图像目标检测算法

基于改进YOLOv5x的遥感图像目标检测算法

扫码查看
针对遥感图像目标检测任务中小目标数量多、目标特征不明显导致检测精度不高的问题,提出了一种基于改进YOLOv5x的遥感图像目标检测算法。首先,主干网络设计了 D-SPP模块,在不加深网络结构的前提下整合了信息,使不同感受野特征能够有效融合。其次,采用SIOU_Loss代替CIOU_Loss作为边界框损失函数,提高边界框定位准确度。最后,增加一个新的检测头以获得更大尺度的特征图进行目标检测,并用Trans-former构建网络中最小的检测头。实验结果表明,本算法在RSOD数据集上检测平均精度均值达到了 91%,比YOLOv5x 算法提升了 5。4%。
Remote sensing image target detection algorithm based on YOLOv5x
In order to solve the problem of low detection accuracy in remote sensing image target detection task due to the large number of small targets and not obvious target features,In this paper,an object detection algorithm based on improved YOLOv5x in remote sensing images is proposed.Firstly,the D-SPP module is designed in the backbone network to integrate the information without deepening the network structure,so that the characteristics of different re-ceptive fields can be effectively fused.Secondly,SIOU_Loss is used instead of CIOU_Loss as the boundary frame loss function to improve the accuracy of boundary frame positioning.Finally,add a new detection head to obtain a larger scale feature graph for target detection,and build the smallest detection head in the network with Transformer.Experi-mental results show that the average detection accuracy of the proposed algorithm on the RSOD data set reaches 91%,which is 5.4%higher than that of the original YOLOv5x algorithm.

YOLOv5xD-SPP moduleTransformerobject detectionremote sensing image

王浩臣、辛月兰、盛月、谢琪琦

展开 >

青海师范大学物理与电子信息工程学院,西宁 810001

YOLOv5x D-SPP模块 Transformer 目标检测 遥感图像

国家自然科学基金青海省自然科学基金面上项目

616620622022-ZJ-929

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(2)
  • 15