首页|基于改进YOLOv5模型的图像标志点特征智能提取方法

基于改进YOLOv5模型的图像标志点特征智能提取方法

扫码查看
标志点被广泛应用于摄影测量和计算机视觉等领域,其中对影像标志点提取是后期进一步应用的关键步骤。因此,提出了基于改进YOLOv5模型的图像标志点特征智能提取方法,相比于传统算法具有更好的适应性和提取效率。首先,提出一种基于极限样本条件下的标志点样本库构建方法,能够快速、自动扩增标志点样本。然后根据标志点的小目标特点,对YOLOv5网络中空间和语义特征进行融合,并添加坐标注意力机制,提高了深度学习网络对标志点的特征提取能力。实验结果表明,本方法对标志点提取的正确率达到96%,平均对每幅图像的提取时间为0。073 s。该方法可为实际工程中标志点的智能提取提供新的思路和方法。
Intelligent extraction method of image marker point features based on improved YOLOv5 model
Marker points are widely used in fields such as photogrammetry and computer vision,where the extrac-tion of image marker points is a key step for further applications in later stages.Therefore,this paper proposes an intel-ligent extraction method of image marker point features based on the improved YOLOv5 model,which has better adapt-ability and extraction efficiency compared with traditional algorithms.First,a method is proposed to construct a marker point sample library based on the limit sample condition,which can rapidly and automatically expand the marker point samples.Then,according to the small target characteristics of marker points,the spatial and semantic features in YOLOv5 network are fused,and the coordinate attention mechanism is added to improve the feature extraction ability of deep learning network for marker points.The experimental results show that the correct rate of marker point extraction by the method in this paper reaches 96%,and the average extraction time for each image is 0.073 s.This method can provide new ideas and methods for the intelligent extraction of marker points in practical engineering.

deep learningextreme samplesimage marker pointsintelligent extractionYOLOv5

张志鹏、解斐斐、陈锦鹏、李萌健

展开 >

山东科技大学测绘与空间信息学院,青岛 266590

深度学习 极限样本 影像标志点 智能提取 YOLOv5

山东省自然科学基金山东省高等学校科技计划项目

ZR2021MD026J18KA214

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(2)
  • 18