首页|基于深度神经网络的数据中心光互连网络资源分配方法

基于深度神经网络的数据中心光互连网络资源分配方法

扫码查看
在人工智能环境下为了提高数据中心光互联网络组件和软件的安全性,需要构建优化的资源分配模型,提出基于深度神经网络的数据中心光互连网络资源分配方法。采用用户关联和功率谱分配联合优化方法构建数据中心光互连网络资源调度模型,结合对网络资源粒度的服务请求QoS资源配置实现对不同种类资源的融合和聚类处理,提取数据中心光互连网络资源的空间、时间、频谱等多维网格抽象模型参数,通过深度神经网络学习方法实现对网络资源分配过程中的多种资源粒度融合和收敛性寻优控制,建立用户之间分配数据中心光互连网络资源的信道模型,通过传输链路均衡配置方案实现对网络资源的优化分配和均衡配置。仿真结果表明,本方法的资源分配传输比特率为18 bit/s,延时较小,资源分配阻塞率低,为0。05%,且资源持有度较高,可始终维持在100%,说明本方法具有对较强的资源均衡配置能力。
Resource allocation method of data center optical interconnection network based on deep neural network
In order to improve the security of data center optical interconnection network components and software in artificial intelligence environment,it is necessary to build an optimized resource allocation model and propose a re-source allocation method for data center optical interconnection network based on deep neural network.The resource scheduling model of the data center optical interconnection network is constructed by using the joint optimization meth-od of user association and power spectrum allocation.The integration and clustering of different types of resources are realized by combining the QoS resource allocation of service requests for network resource granularity,and the spatial,temporal,spectral and other multidimensional grid abstract model parameters of the data center optical interconnection network resources are extracted,The deep neural network learning method is used to realize the multi-resource granu-larity fusion and convergence optimization control in the process of network resource allocation,establish the channel model for allocating the network resources of the data center optical interconnection between users,and realize the opti-mal allocation and balanced allocation of network resources through the transmission link balanced configuration scheme.The simulation results show that the resource allocation transmission bit rate of this method is 18 bit/s,the delay is small,the resource allocation blocking rate is low,which is 0.05%,and the resource holding rate is high,which can always be maintained at 100%,indicating that this method has a strong ability of resource balanced alloca-tion.

artificial intelligencesoftware securi-tydeep neural networkdata center optical interconnec-tion networkresource allocation

吕莹楠、尹奇龙、赵健

展开 >

黑龙江东方学院,哈尔滨 150066

人工智能 软件安全 深度神经网络 数据中心光互连网络 资源分配

黑龙江省科技厅重点研发计划项目黑龙江省科技厅重点研发计划项目

GZ20210163GZ20220154

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(2)
  • 15