激光杂志2024,Vol.45Issue(3) :81-86.DOI:10.14016/j.cnki.jgzz.2024.03.081

基于主动激励红外成像的大坝渗漏AI识别方法研究

Study on dam leakage AI detection method based on infrared thermal imaging

王嘉浩 丁勇 黄英豪 王羿 吴玉龙
激光杂志2024,Vol.45Issue(3) :81-86.DOI:10.14016/j.cnki.jgzz.2024.03.081

基于主动激励红外成像的大坝渗漏AI识别方法研究

Study on dam leakage AI detection method based on infrared thermal imaging

王嘉浩 1丁勇 1黄英豪 2王羿 2吴玉龙3
扫码查看

作者信息

  • 1. 南京理工大学理学院,南京 210094
  • 2. 南京水利科学研究院,南京 210024
  • 3. 昆山市建设工程质量检测中心,江苏昆山 215337
  • 折叠

摘要

为了解决大坝渗漏识别的问题,本文提出了一种将主动激励红外成像与深度学习结合的大坝渗漏识别方法.通过计算机仿真制作渗漏红外图像,再结合模拟大坝渗漏试验采集得到的红外图像,生成渗漏红外图像数据集用于深度学习的训练.在YOLOv5原始模型的基础上,用AF-FPN替换原有的FPN,提高识别大坝红外图像渗漏区域的能力,并在识别速度和准确率之间做出有效的权衡.试验表明,模型的准确率为87.6%,召回率为96.5%,平均准确率(IoU=0.5)为88.3%,表明本文提出的方法可较好的识别大坝红外图像渗漏区域.

Abstract

In order to solve the problem of dam leakage detection,this paper presents a dam leakage detection method which combines active excitation infrared imaging with depth learning.The infrared image of leakage is pro-duced by computer simulation,and then combined with the infrared image acquired by simulating dam leakage test,the infrared image data set is generated for the training of depth learning.On the basis of Yolov5 original model,using AF-FPN to replace FPN can improve the ability of identifying the leakage area of dam infrared image,and make an ef-fective trade-off between identifying speed and accuracy.The test results show that the accuracy of the model is 87.6%,the recall rate is 96.5%,and the average accuracy(IoU=0.5)is 88.3%,which indicates that the method proposed in this paper can identify the leakage area of dam infrared image well.

关键词

大坝/红外图像/主动激励/深度学习/渗漏识别

Key words

dam/infrared image/active excitation/depth learning/leakage identification

引用本文复制引用

基金项目

中央级公益性科研院所基本科研业务费专项(Y322008)

国家重点研发计划(2022YFC3005502)

国家自然科学基金(51979174)

国家自然科学基金联合基金(U2040221)

出版年

2024
激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
参考文献量18
段落导航相关论文