首页|基于多尺度特征聚合的图像超分辨率重建

基于多尺度特征聚合的图像超分辨率重建

扫码查看
针对图像超分辨率重建过程中,存在提取特征信息单一、图像细节缺失的问题,提出了一种新的生成式对抗网络(DAMFA-GAN),以获得更加逼真和自然的重建图像。在生成器方面,设计融合动态注意力机制的多尺度特征聚合模块(DAMFA)以获取低分辨率图像中每个上采样特征的多尺度高频信息,提高重建图像的质量;在判别器方面,设计ConvTrans Encoder模块以增强特征信息提取能力,提高判别的准确率。在Set5、Set14、BSD100和Urban100数据集上的实验结果表明,DAMFA-GAN在峰值信噪比(PSNR)和结构相似性(SSIM)上较于SRGAN分别平均提高了 0。50 dB、0。015 2。同时,超分辨率重建图像的高频细节和视觉效果也得到了明显改善。
Super-resolution reconstruction of images based on multi-scale feature aggregation
To address the problems of single extracted feature information and missing image details in the image super-resolution reconstruction process,this paper proposes a new generative adversarial network(DAMFA-GAN)to obtain more realistic and natural reconstructed images.In terms of generator,a Dynamic attention-Multi-scale feature aggregation(DAMFA)incorporating a dynamic attention mechanism is used to obtain multi-scale high-frequency in-formation of each upsampled feature in low-resolution images to improve the quality of the reconstructed images;in terms of discriminator,the ConvTrans Encoder module is designed to enhance the feature information extraction capa-bility to improve the accuracy of discrimination.Experimental results on the Set5,Set14,BSD100 and Urban100 data-sets showed that DAMFA-GAN improved the peak signal-to-noise ratio(PSNR)and structural similarity(SSIM)by an average of 0.50 dB and 0.015 2 respectively compared to SRGAN.At the same time,the high-frequency details and visual effects of super-resolution reconstructed images are also significantly improved.

image super-resolution reconstructionmulti-scale feature aggregationgenerative adversarial net-workattention mechanism

王庆庆、辛月兰、盛月、谢琪琦

展开 >

青海师范大学计算机学院,西宁 810001

藏语智能信息处理及应用国家重点实验室,西宁 810001

图像超分辨率重建 多尺度特征聚合 生成对抗网络 注意力机制

国家自然科学基金青海省自然科学基金面上项目

616620622022-ZJ-929

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(4)
  • 9