首页|基于双线性RepVGG注意力网络的花卉分类

基于双线性RepVGG注意力网络的花卉分类

扫码查看
为进一步提高花卉分类的准确率,在对双线性卷积神经网络、RepVGG及注意力机制进行研究的基础上,提出一种基于双线性RepVGG注意力机制的网络模型。首先利用RepVGG网络替换原始的特征提取网络VGG,以提高对花卉主要特征的提取能力;然后在两个RepVGG网络中分别引入通道注意力及空间注意力机制,并利用两个RepVGG网络外积后生成的高维双线性特征,来提取花卉的细粒度特征;最后通过结构重参数化,将RepVGG的各层转换为单路结构,以提高模型推理的速度。实验结果表明,在增强的Oxford-102数据集上,新模型与原始模型及常见模型相比,其推理速度及分类准确率均有较大的提升,与未引入注意力前相比,分类准确率也有一定的提升。
Flower classification based on bilinear RepVGG attention network
To further improve the accuracy of flower classification,a new network model was proposed based on bilinear convolutional neural network,RepVGG and attention mechanism.Firstly,RepVGG network was used to re-place the original feature extraction network VGG to improve the ability to extract the main features of flowers.Then,channel attention and spatial attention mechanisms were introduced into the two RepVGG networks respectively,and the high-dimensional bilinear features generated by the cross-product of the two RepVGG networks were used to ex-tract the fine-grained features of flowers.Finally,the RepVGG layers are transformed into single-way structures by structure reparameterization to improve the speed of model reasoning.Experimental results show that on the enhanced Oxford-102 data set,the inference speed and classification accuracy of the new model are greatly improved compared with the original model and the common model,and the classification accuracy is also improved compared with that be-fore the introduction of attention.

bilinear convolutional neural networksRepVGGattention mechanismfine-grainedstructural re-parameterization

侯向宁、赵金伟、黄孝斌、蒋维成

展开 >

成都理工大学工程技术学院,四川 乐山 614000

核工业西南物理研究院,成都 610200

西安理工大学计算机科学与工程学院,西安 710048

双线性卷积神经网络 RepVGG 注意力机制 细粒度 结构重参数化

国家自然科学基金成都理工大学工程技术学院项目

62176210C122020006

2024

激光杂志
重庆市光学机械研究所

激光杂志

CSTPCD北大核心
影响因子:0.74
ISSN:0253-2743
年,卷(期):2024.45(4)
  • 2